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Abstract

In terrestrial plants the segregation of male and female reproductions on different individuals results in the seed-shadow handicap:
males do not disperse any seed so that the number of local patches reached by seeds is potentially reduced in dioecious populations
in comparison to hermaphrodite populations. An analytical model, incorporating a lottery-based recruitment and dispersal
stochasticity, was built. The spatially mediated cost of the seed-shadow handicap has been assessed considering the criterions for the
invasion of a resident hermaphrodite species by a dioecious species and the reverse invasion, both species having the same
demographic parameters but assuming a likely higher fecundity for dioecious females. The reciprocal invasion of a dioecious and
hermaphrodite species differing only by their fecundity is never possible. The seed-shadow handicap disappears when the dispersal
or survival rate is high enough. This latter point is due to dispersal stochasticity, which allows for the existence of empty patches. A
low fecundity and an aggregated seed distribution increase dispersal stochasticity and increase the positive impact of a low mortality
rate on the relative competitivity of dioecy and hermaphroditism. Adding a dispersal cost has a comparable effect but also requires

higher dispersal rates for the dioecious invasion.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Dioecy is recognized to have evolved for two main
reasons (Bawa, 1980; Thomson and Brunet, 1990). First,
dioecy is a way to avoid auto-fecundation and the
consequent inbreeding depression (Charlesworth and
Charlesworth, 1978). Second, dioecy might lead to a
more efficient use of resources when male and female
reproductions use the same resources and do not share
costs (Charnov and Maynard Smith, 1976). However,
since terrestrial plants are sessile, dioecy also leads to the
spatial segregation of female and male reproductions:
males and females functions are achieved by different
immobile individuals that may stand away from each
other.

On the one hand, when female gametes are not
dispersed before fecundation, as in flowering plants,
females and males do not produce offspring unless
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pollen is dispersed far enough to reach females. On the
other hand, all seeds are released by females. Consider-
ing two dioecious and hermaphrodite populations,
having the same adult spatial pattern and the same seed
dispersal distance distribution, the seed-shadow, i.e. the
whole area to which a population disperses its seeds, is
likely much wider for the hermaphrodite population
than for the dioecious population. This confers higher
dispersal ability to hermaphrodite species. Dioecious
species can be considered to bear a seed-shadow
handicap (Baker, 1955; Heilbuth et al, 2001). In
particular, since some seeds are always expected to fall
in their mother local patch, patches freed by the death of
adults are more easily recolonized in hermaphrodite
species than in dioecious species. In these species,
recolonization of male patches requires, symmetrically
to the dispersal of pollen from males to females, the
uncertain dispersal of seeds from females that may stand
far away. Consequently, dioecious species have to face
the loss of two symmetric assurances: the “reproduc-
tive assurance” that ensures that all individuals of
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hermaphrodite self-compatible populations reproduce,
and the “dispersal assurance” that ensures that all
individuals of hermaphrodite populations disperse
seeds. Demographic costs of dioecy have been recog-
nized for a long time (Baker, 1955, 1967; Pannell and
Barrett, 1998). Recently, the impact of the seed-shadow
handicap has been emphasized using simulation models
([13]Heilbuth et al., 2001). We present here an analytical
model analyzing this demographic cost. The model was
derived from Gignoux’s model of coexistence (Gignoux,
1994), to which the possibility of separated sexes has
been added.

(1) We compared the necessary conditions for the
persistence of hermaphrodite and dioecious species in
isolation. (2) We derived the criterion for the invasion of
resident hermaphrodite species by dioecious species
introduced at low density as well as the criterion for
the reverse invasion (Shmida and Ellner, 1984). (3) The
invasion criterions were used to assess the seed shadow
handicap. (4) The effect of a dispersal cost on the seed-
shadow was determined. Establishing an invasion
criterion is a very general way to assess the relative
competitive ability of different species (Metz et al., 1992;
Chesson, 2000). If the loss of dispersal assurance has no
effect on the demography of a dioecious species, this
species, provided a slight demographic advantage (for
example in fecundity or survival), should be able to
invade an equivalent hermaphrodite species. Deriving
the criterion for the reverse invasion of an established
dioecious population is important to assess the seed-
shadow handicap but also to determine the outcome of
an invasion by a dioecious species. If, and only if, both
species are able to invade each other, they coexist in a
stable way (Dieckmann, 1997).

2. Model hypotheses

Individuals of the different species (identified by
subscripts) compete for space in an infinite spatially
homogeneous regular lattice: only one adult can survive
in each cell (local patch). Time is discrete (reproduction
is seasonal). Although the model is not truly spatially
explicit, the dispersal process is a source of spatial
heterogeneity. In each cell deprived of adult, and in
which some seeds have fallen (no dormancy has been
considered), a new adult is recruited and its species is
chosen according to a competitive lottery process
(Chesson and Warner, 1981). No temporal or spatial
environmental variability is considered. The system is
described by P the proportion of cells occupied by no
adult and by M; and F; the respective proportions of
cells occupied by species i males and females (for a
hermaphrodite species, F; is the proportion of cells
occupied by all adults). At each time step, and for each
species i, (1) a proportion §; of adults dies (same

mortality rate for males and females), (2) each adult
female produces f3; seeds, (3) a proportion d; (dispersal
rate) of seeds is dispersed with an equal probability to
any cell of the lattice but to the mother cell (global
dispersal), while a proportion 1 — d; of the seeds remains
in the mother cell (no dispersal), (4) when there is no
adult in a cell, a new one is recruited from the local seed
pool and the probability that the recruited adult is of
species i is the ratio of the number of species i seeds to
the total number of seeds, (5) s; is the proportion of
adult individuals that produce seeds. For a dioecious
species, it is the primary sex ratio of seeds, i.e. the
proportion of female seeds. It is also the sex ratio of
adults since male and female recruitment and mortality
rates are supposed equal. Reproduction was never
considered as limited by the availability of male gametes
and was thus independent of both the sex ratio and the
proportion of cells occupied by males. Thus, we only
need to analyze the dynamics of females (F;). When s; =
0.5 the species can be considered as dioecious with an
even sex ratio. When s; = 1, all individuals produce
seeds and the species can be considered as hermaphro-
dite. In this way, the same equations hold for both
hermaphrodite and dioecious species.

Throughout the paper we consider two species,
species 1 being dioecious (s; = 0.5), species 2 being
hermaphrodite (s, = 1). To compare the dynamics of a
hermaphrodite species to the dynamics of an “equiva-
lent” dioecious species having the same survival and
dispersal rates (d» = d| = d, d, = 01 = ), as Wilson and
Harder (2003) did, we consider that the fecundity of the
dioecious species is ¢ times higher than the fecundity of
the hermaphrodite species (f, = f8,/¢ = ). Throughout
the article the term “equivalent dioecious and hermaph-
rodite species” is used for short and must be understood
in his way. The increased fecundity is compatible with
both (1) the sexual specialization theory (Charnov and
Maynard Smith, 1976; Thomson and Brunet, 1990) and
(2) the possible increase in realized fecundity due to the
avoidance of inbreeding depression (Maynard Smith,
1989; Crawley, 1996). First, if hermaphrodite indivi-
duals invest the same amount of resource in male and
female reproduction, dioecious females should have a
fecundity twice as large as hermaphrodite females. If
resource allocation to female reproduction is higher,
dioecious females should have a fecundity lower than
this doubled fecundity. Specialization into male or
female reproduction may result in a more efficient use
of resources, leading to higher fecundities. Second, the
fecundity parameter used in the model is a realized
fecundity, it is the number of viable seeds produced,
released, and able to grow into new individuals. In this
way, the parameter ¢ could also describe the increase in
reproductive success resulting from the evolution of
dioecy in a hermaphrodite species for which inbreeding
avoidance cannot be neglected. The upper value for ¢
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was chosen arbitrarily in numerical calculations, but all
¢ values used are compatible with the observed effect of
out-crossing in plants (Crawley, 1996).

On average, in a cell occupied by a female of species i,
v species i seeds are falling, while everywhere else (under
a male of species 7, under a male or a female of any other
species) A; species i seeds are falling:

4i(1) = Fi(t)B;d; and y;(2) = 2i(2) + B;(0)(1 — di(2)). (1)

3. Dispersal stochasticity

Since dispersal is considered as stochastic, 4; and y,
are the mathematical expectations of the number of
seeds falling in each type of cell. The real number of
seeds falling in each cell (#;) follows a probability law,
i.e. stochasticity allows for variations in the number of
seeds falling in each cell. The process allows for the
existence of free cells where no seed has fallen, and
where no adult is recruited. This hypothesis of stochastic
dispersal is realistic since, especially at low densities of
adult females or with low fecundities, important
deviations from the expected numbers of seeds are
likely to appear (Hurtt and Pacala, 1995; Schupp and
Fuentes, 1995).

Assuming that there are 2 species, let g(N,N;) be the
recruitment probability of a species 1 individual in a cell
where there are on average N; and N, seeds of species 1
and 2:

g(Ni, N2) =(1 — P(no seed))

i
XD Zmp("l =1i)P(ny =)
N

Using the hypothesis that the numbers of seeds,
n; and n,, follow 2 independent Poisson (P) laws
of parameters N; and N; (modeling a random
distribution of seeds) we get g¢gp after simp-
lifications:

Ny
N+ Ny

Similarly, if the numbers of seeds, n; and n,, follow 2
independent binomial (B) laws of parameters (rq, p) and
(r2, p) (modeling a regular, or over-dispersed, distribu-
tion of seeds) we get gp using the same type of
calculations:

gp(N1, N2) = (1 — e Vi)

)\t r
p) )1’1 +ry

Necessarily ry, r» and p are chosen so that E(n;) =
Ny =rp and E(m)= N, =rp. Thus g can be
rewritten as a function of Ny and N:

gs(N1,N>) = (1 — (1 _p)p"(N1+Nz))

gB(r1’r27p) = (1 - (1

N
N+ Ny

We can also consider that the numbers of seeds, n;
and ny, follow 2 independent negative binomial (NB)
laws of parameters (r;, p) and (r,, p) (modelling a
clumped distribution of seeds). p is the probability of
success and the random variables are the numbers of
failures before getting r; successes (and not the total
numbers of trials as often assumed for NB distribu-
tions). Since E(n;) =N, =ri(1—-p)/p and E(n) =
Ny, =ry(1 —p)/p we get
N

Ni.N>) = (1 — (1=p) ™' (N1+72) )
gNB(N1, No) = (1 =p7 )N1+Nz

The three g functions can be rewritten in the same
way:

N
_ ki N )
¢ N (2)

With k(p) equal respectively to In(p)p/(1—p),—1 and
In(1 — p)/p for NB, P, and B distributions, p belonging
to [0,1]. The second term of g is the probability of
recruitment of a species 1 individual knowing that at
least one seed has fallen in the considered cell. The first
term is the probability of this event.

The P distribution (k(p) = —1), for which the mean
is equal to the variance, is used to model random
distributions (Cressie, 1993). For the B distribution
k(p) belongs to |—oo,—1] and the variance is equal
to the product of (1—p) by the mean, so that the
variance is lower than the mean. This models
regular seed distributions (Cressie, 1993). For the NB
distribution k(p) belongs to |—1,0] and the variance is
equal to the product of 1/p by the mean, so that the
variance is higher than the mean, which models
aggregated seed distributions. k(p) is always negative,
and the smaller it is, the less likely it is that no seed falls
in a cell: the effect of stochastic dispersal gets smaller. In
this way, the type of the seed distribution and the value
of p determine the strength of dispersal stochasticity.
Whatever p, dispersal stochasticity is stronger for NB
than for B, i.e. stronger for aggregated than for regular
distributions and is intermediate for P, i.e random
distribution. We have computed g for B and NB
distributions in the simple (and analytically tractable)
cases where seeds of the two species have the same p
parameter. In our case this is realistic because we want
to assess the invasion capability of equivalent species
differing only by their reproduction mode (dioecious/
hermaphrodite) and thus having the same level of
dispersal stochasticity.

g(N1, Na) = (1

4. Persistence criterion

For any species in isolation we have at the equilibrium
PP+F +M"=1 and P*<1 is a necessary and
sufficient condition for the persistence of this species.
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Only one species is present, thus we have
P(t+ 1) =F(t)d[1 — g(y,0)] + M(£)o[1 — g(4,0)]
+ P(1)[1 —g(4,0)]. 3)

The two first terms of this equation stand for the cells
that are not recolonized after the death of a male or a
female. The third term stands for the free cells that are
not recolonized. At equilibrium, this leads to

P —s(1 — P*)3ekn) 60—l
+[(1 = 5)(1 = P*)§ + P|ekpisi=Pbd (4)

Computing the derivative of this expression as a
function of P*, we then get the following general
persistence criterion:

_k(P)ﬁdS>5<l —s—l—sek(P)/f(lfd))' 5)

This leads to the following criterion for a hermaph-
rodite species (s = 1):

—k(p)pd > o PPI=d),

Eq. (4) can be used to derive numerically the value of
P*. For a P distribution (k(p) = —1), inequality (5)
means that for a dioecious species to persist, the number
of seeds produced and dispersed by the whole female
population (left-hand side of the inequality), must be
higher than the number of adults dying without
recruiting locally any of their offspring (right-hand side
of the inequality). This inequality takes into account the
fact that dying individuals might be males (with a
probability 1 — ), which by definition do not produce
any seed, or females (with a probability s), which do not
recruit locally any of their non-dispersed offspring, with
a probability 1 —g(f(1 —d),0) = e P19 (cf. Eq.(2)
with only one species). If the species is hermaphrodite,
dispersed seeds only have to make up for the cases where
a dead hermaphrodite adult fails to recruit one of its
non-dispersed seeds.

These equations are interpreted in the same way for
the three types of seed distribution. When k(p) decreases
(its absolute value increases) the chances that no seed is
locally recruited decrease (right-hand side of the
inequality) and dispersed seeds reach more cells (left-
hand side of the inequality). The condition for the
persistence of a population is more severe for a NB
(0>k(p)> — 1) than for a B (—1>k(p)) distribution
and is intermediate for a P distribution (k(p) = —1).
Hence, the more aggregated seed distribution is, the
more detrimental it is to the persistence of a population.

From Fig. 1, three patterns of persistence arise: (A)
For low fecundities, the constraint on survival and
dispersal is stronger for the persistence of hermaphro-
dite populations than for the persistence of dioecious
populations (the dioecious persistence curve is above the
hermaphrodite persistence curve). (B) For high fecund-
ities the persistence constraint is more benign for the
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1.0

0.8 1

0.6 A

0.4 1

0.2

0.0 ¥ : : : :
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Il Dioecious, ¢=2.5
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1.0 N K15 .

Mortality rate ()

0.8 1

0.6
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0.2 1

0.0
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Dispersal rate (d)

Fig. 1. Limit condition for the persistence of an isolated population in
the dispersal-mortality plane. The Poisson law has been used for the
number of seeds dispersed to each cell. Numbers on the curves denote
fecundities. A species must lie below and on the right-hand side of the
corresponding curve to persist. Panel I corresponds to a hermaphrodite
species, while panel 11 corresponds to a dioecious species with ¢ = 2.5
and an even sex-ratio: the basic fecundity (displayed on the curves) has
then been multiplied by 2.5 to take into account the likely increase in
fecundity induced by the specialization of individuals into male or
female reproduction (see text). Inequality (5) was solved numerically
using Mathematica (Wolfram, 1996) to draw the figure. As landmarks,
the curve corresponding to a fecundity of 1.2 is displayed with a special
line type: ss®w»1.

hermaphrodite species than for the dioecious species.
(C) There are intermediate fecundities for which the
corresponding dioecious and hermaphrodite persistence
curves cross each other (see Fig. 1 for f = 1.2, see also
explanations of Figs. 2 and 3 and the different types of
invasion limit). In these cases the persistence curve of the
dioecious species is above the one for the hermaphrodite
species for the higher dispersal rates: the persistence
criterion becomes more benign for the dioecious species
when dispersal rate increases. Because these three cases
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0.6 0.6 i Persistence of the
— 04 0a| /] hermaphrodite population
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Dispersal rate (d)

I:l Invasion of the dioecious population
by the hermaphrodite population

[:l Invasion of the hermaphrodite population

by the dioecious population

Ij None of the populations
can persist

- Both populations can persist
but no invasion is possible

Fig. 2. Reciprocal invasion and persistence limits for equivalent dioecious and hermaphrodite populations. Each panel displays these limits for a
different combination of ¢ (increase in fecundity due to the reproductive specialization of dioecious individuals) and f (fecundity). In all cases a
Poisson law was used for the number of seeds per cell and the dioecious species had an even sex-ratio. Panel names correspond to the relative position

of the persistence limits.

lead to different types of invasion limit (see text below
and Figs. 2 and 3) we keep their denomination (A, B, C)
throughout the paper. When ¢ increases, dioecy
becomes more favorable than hermaphroditism for
increasing fecundity values (graphic results not dis-
played).

These are evidences of the impact of the seed-
shadow handicap and the fact that this handicap
disappears when ¢ or d increases. The whole pattern
is due to the nonlinearity of Eq. (5). When f or |k(p)]
decreases, the probability that a hermaphrodite
individual recruits at its death one of its non-
dispersed offspring decreases due to dispersal stochas-
ticity, and goes to zero, which is the probability that a
male produce seeds. Consequently, when f or
|k(p)|decreases, hermaphrodite species and their equiva-
lent dioecious species become more similar, as regards
the recruitment of conspecific offspring in the patches
freed by the death of adults. Hence, a small fecundity
advantage (¢) makes the persistence of the dioecious
species easier than the persistence of its equivalent
hermaphrodite species.

5. Invasion criterion

To derive a general criterion for the invasion of
species 2 by species 1, we derive the limit (r) of the
growth rate of a species 1 population, when the

proportion of cells occupied by this invading species
goes to 0 and when the proportion of free cells is P}
(Eq. (4)). Since fecundity does not depend on males, and
since the sex ratio is constant we only need to study
female dynamics:

Fi(t+1) =F(0)(1 = &) +s1F1()519(7y, 42)
+ 1M1 (£)019(21, 72) + $1F2(£)029(A1,75)
+ 1Mo (0)029 (21, 72) + 51 P(1)g (21, 42),  (6)

(1) The first term stands for the survival of species 1
females, (2, 3) the second and third terms for the death
of species and the recolonization of the corresponding
cells by species 1 females, (4, 5) the fourth and fifth
terms for the death of species 2 females and males,
and the recolonization by species 1 females, (6) the last
term for the colonization of free cells by species 1
females.

We considered two equivalent species (dr = d) =d,
0y =01 =9, , = /¢ = p). Dividing all terms by F(¢)
and replacing 4; and y; by their expressions (Eq. (1)), we
get:

im Fi(t+1)
F(-0  Fi(1)

+ 5109 (B (1 — ), 52(1 — P3)d)

+ 510¢g(s2(1 — P3)pd, p(1 —d))

+ %g(sz(l — P3)pd,0) ((1 —52)0+7 fzp;)

:r1:1—51
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Fig. 3. Limit curves for the invasion of a hermaphrodite species (s, = 1) by a dioecious species (s; =0.5) taking the same dispersal and mortality rates
(Eq. (7)). Each curve corresponds to a different fecundity for the hermaphrodite population (as indicated on one panel). As landmarks, 3 curves are
displayed with special line type: ssssss: , 0.05; === 1.2; , 10. A given hermaphrodite species is invaded by its equivalent dioecious species if it lies
under and on the right hand side of the corresponding curve. Each panel displays the limit invasion curve for a different combination of ¢ (the
increase in fecundity, 2.01, 2.5, 3.0) and the statistical law for the number of seeds falling in each cell. The 2.01 value has been chosen as the minimal
value since ¢ >2 is a necessary condition for the invasion. For the Poisson law (P) the variance is equal to the mean. For the binomial law (B) with
p = 3/4 the variance is four times as small as the mean. For the negative binomial law (NB) with p = 1/4 the variance is four times as high as the

mean.

This leads, after some algebraic manipulations using ability that an individual of the invading population
Eq. (4), to the general condition for the successful does not recruit in its cell, at its death, any of its non-
invasion of a resident population by individuals of an dispersed f¢(1 — d) seeds while invading an established
equivalent species introduced at low density, both population of an equivalent species ((1 - P;)szﬂd
species differing only by their sex ratio (hermaphrodite seeds). Since individuals of the two species only produce
species, s; = 1; dioecious species, s;>0) and fecundity seeds with a probability s;, g is multiplied by s; to get
(¢): the probability of recruiting a non-dispersed
bs1 l—slg(ﬁqb(l —d), (1 —PE)Szﬁd) offspring. Taken tog'ether,‘ this ratio (Eq.(7)) is a
Pt [ sg(B =), (1 = P3)safpd) (7) measure of the.relatlve Q1fﬁculty for adults .of two

2 29 ’ 2)°2 species to recruit, at their death, one of their non-

The denominator of the right-hand side of this dispersed offspring during the invasion of one species by
inequality is the probability that an individual of the the other. This recruitment difficulty for the invading
established population ((1 — P;)szﬁd dispersed seeds) species can be made up by an increase in its relative
does not recruit in its cell, at its death, any of its non- fecundity at the population scale, i.e. the left-hand side

dispersed f(1 — d) seeds. The numerator is the prob- of the inequality, ¢s;/s>.
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Using Eq. (7), we determine in which cases a
dioecious species with an even sex-ratio is able to invade
a resident equivalent hermaphrodite species and in
which cases the reverse invasion is possible. First,
this inequality depends on mortality through P;
(Eq. (4)). Second, and obviously, for an even sex
ratio, a necessary condition for a dioecious invasion is
¢>2, and when ¢<2 the hermaphrodite species
always invade its equivalent dioecious species. Because
inequality (7) cannot be solved analytically,
numerical computations using Mathematica (Wolfram,
1996) were used to display graphically invasion
limits (Fig. 2). (A) If the persistence curve of the
dioecious species is above that of the equivalent
hermaphrodite species, the latter cannot invade and is
always invaded by the other one. (B) If the two
persistence curves cross each other the limit invasion
curves are partially composed of the persistence curves
of the dioecious and hermaphrodite species, (Eq. (5))
and their respective invasion criterions (Eq. (7)).
This inequality leads to two different invasion limits,
for the dioecious and hermaphrodite invasions, which
define a thin area in which the two species can persist
alone but are not able to invade each other. The
dioecious (hermaphrodite) species can invade the
hermaphrodite (dioecious) species in the parameter
domain corresponding to the higher (lower) dispersal
rate values. (C and C’) If the persistence curve for the
hermaphrodite species is above that of the equivalent
dioecious species and if ¢ >2, the invasion domains are
only defined by the invasion criterion (Eq. (7)). Again
the dioecious (hermaphrodite) species can invade the
hermaphrodite (dioecious) species in the parameter
domain corresponding to the higher (lower) dispersal
rate values. (C”) If the persistence curve of the
hermaphrodite species is above that of the equivalent
dioecious species and ¢ <2, the hermaphrodite species
always invades the dioecious species and the reverse is
never possible.

The key point (which can only be shown numerically)
is that invasion limits may only cross each other at
the intersection of the persistence curves (Fig. 2, panel
B). In other words, the invasion is never reciprocal and
the two considered species can never coexist in a
stable way. To determine invasion limits in Fig. 2 the
P distribution was used for the number of seeds falling
in each cell. The NB and B distributions lead
qualitatively to the same patterns (graphical results not
displayed) and do not enable reciprocal invasion. In all
cases, the parameter domain on which both species
can persist but not invade each other is very small.
Due to this result, it is valid to focus on the criterion for
the invasion of a hermaphrodite population by an
equivalent dioecious population (discarding the criter-
ion for the reverse invasion) to assess their relative
competitivity.

6. Assessment of the seed-shadow handicap

The comparison of the persistence criterion of
hermaphrodite and dioecious species gives first clues
on the seed-shadow handicap: it is more difficult for
dioecious than for hermaphrodite species (having the
same mortality, and dispersal rate) to persist unless
the dioecious species has a higher fecundity than
the hermaphrodite species, the dispersal rate is suffi-
ciently high and fecundity is sufficiently low. To analyze
further the seed-shadow handicap invasion criterions
must be used, and it is valid to focus on the criterion for
the invasion by the dioecious species (see above). Each
panel of Fig. 3 displays the same pattern. For low
fecundity values, only species with low mortality can
persist and a dioecious species always invade its
equivalent hermaphrodite species (case (A)). For inter-
mediate fecundity, (B) cases appear: dioecious invasion
depend clearly on both mortality and dispersal. For high
fecundity values only hermaphrodite populations with
high dispersal rates will be invaded (case (C)). When
fecundity increases further the limit invasion curve goes
progressively to a vertical line (as shown by the curve
corresponding to a fecundity of 10, Fig. 3). The invasion
by a dioecious species is then only possible if the
dispersal rate is higher than a fixed value dj, p that
does not depend on the mortality rate (see below).
The smaller ¢ the more frequent the intermediate
(B) case which leads to composite invasion curves
(Fig. 3). The higher ¢, the more likely the invasion by
a dioecious species: from the first to the third row of
panels (Fig. 3), the limit condition moves towards lower
values of the dispersal rate and higher values of the
mortality rate.

The general pattern described above is valid for the
three statistical laws used for the number of seeds falling
in each cell. However, the NB distribution leads more
often to intermediate (B) cases and to (A) cases than the
P distribution: limit curves correspond mostly to the
persistence limit of the dioecious species. The B
distribution has the opposite effect, i.e. invasion limit
curves are mostly composed of nearly vertical lines
corresponding to the invasion criterion (case (C)).
Switching from a B distribution to a P distribution
and then to a NB distribution has the same effect as
increasing ¢ so that there is a gradient from the upper
left panel of Fig. 3 (mostly (C) cases) towards its lower
right panel (mostly (A) cases).

The limit dispersal rate value (djim,p) is found deriving
the limit of both terms of inequality (7), when f goes to
infinity. When fecundity increases, all cells are reached
by more and more seeds and consequences of recruit-
ment stochasticity disappear (P; goes to 0). This leads to
a second-order equation for d with only ¢ as parameter
and which is valid for the three types of seed distribution
(BN, P, B) whatever k(p). The only solution of this
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Fig. 4. Variations of the limit dispersal rates for the invasion of
equivalent dioecious (s; =0.5) and hermaphrodite species (s, = 1), when
fecundity goes to infinity. These limit values only depends on ¢, the
increase in fecundity in the dioecious species. Grey shades denoting
invasion domains are the same as in Fig. 2. A wide and unrealistic
range was used for ¢ to show the convergence of the two invasion
curves.

equation in the interval [0,1] is:

2
o) = L2084

As already suggested by Fig. 3, diim p is a decreasing
function of ¢ and goes to 0 when ¢ goes to infinity, and
dimp(2)=1 (Fig. 4). First, this confirms that the
increase in female fecundity due to the switch from
hermaphroditism to dioecy is critical to determine the
success of an invasion by a dioecious species. Second,
when the fecundity of the hermaphrodite population is
high and when ¢ = 2, dioecious species are never able to
invade unless they have very high dispersal rates (d~ 1),
which might not be realistic.

When fecundity goes to infinity, the limit for the
invasion of a dioecious species by an equivalent hermaph-
rodite species also goes to a vertical line which only
depends on ¢ (equation not given but calculated as for
dim p)- The corresponding limit dispersal rate, djm 1, goes
to 0 when ¢ goes to infinity, and dym n(2)=1 (Fig. 4).
dimu—dimp goes to 0 when ¢ goes to infinity or to 2.
Hence the limit invasion curves defined by inequality (7)
converge when fecundity goes to infinity and ¢ goes to
infinity or to 2. It can be shown numerically that this
convergence holds whatever the fecundity when ¢ goes to
2 or to infinity. The convergence is quicker when ¢ goes to
2 than when ¢ goes to infinity (comparison between Fig. 3
(C) and (C'), see also Fig. 4 for the case where f goes to
infinity). These results confirm that the parameter domain
on which equivalent dioecious and hermaphrodite species
can persist but not invade each other is small, especially for
realistic ¢ values (probably not much higher than 3).

7. Effect of a dispersal cost on the seed-shadow handicap

Dispersed seeds might suffer an extra mortality (),
for example because they are dispersed by animals which

eat the fruits and destroy some of the seeds or eat the
seeds but scatter some of them (Howe and Smallwood,
1982). We get general persistence and invasion criterions
as previously:

—k(p)(1 = 84)pds > (1 s+ sek(p)ﬂ(l—d))

and

psi 1 —s519(Bp(1 = d), (1 = P3)s2pd(1 — a))
52 7 1=sg(B(1 —d), (1 —P3)s2pd(1 = dq))

Fig. 4 gives graphical examples of the effect of a
dispersal cost on the limit for the invasion of a
hermaphrodite population by an equivalent dioecious
population. The trends shown are valid for the three
laws used for seed distribution and the whole range of
parameters used in Fig. 3. The dispersal cost has four
effects: (1) It bends persistence curves, i.e. when the
dispersal rate increases the mortality rate must decrease
for a population to persist (Fig. 5 panel I, ; = 0.9 or
04 =0.7). (2) Due to the dispersal cost, persistence
curves of equivalent dioecious and hermaphrodite
species are more likely to cross each other, so that case
(C) invasion limits are often turned into case (B) (Fig. 5
panel I, see also Fig. 2 and explanations above). (3) It
pushes whole persistence curves downwards (Fig. 5
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Fig. 5. Effect of a dispersal cost on the limit for the invasion of a
hermaphrodite (s,=1) population by an equivalent dioecious species
(s1=0.5). As an example two combinations of the law for the number
of seeds by cell, ¢ (increase in fecundity due to the reproductive
specialization of dioecious individuals) and f (fecundity) were chosen.
Each curve corresponds to a different dispersal cost, i.e. an extra
mortality for dispersed seeds, as indicated by curve labels.
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panel II). (4) It shifts the invasion limits (Eq. (7))
towards higher dispersal rates (Fig. 5 panel I).

Points (1) and (2) are due to the non-linearity of
Eq. (5) (therefore to dispersal stochasticity) and the fact
that the effect of a dispersal cost increases when
dispersal rate increases. Point (3) means that decreasing
adult mortality permits to make up for an extra
mortality for seeds. Point (4) is due to the fact that
dioecious species can make up for the seed shadow
handicap by having high dispersal rates, which increases
mortality at the seed stage, which can be further
compensated by higher dispersal rates. Taken together,
adding a dispersal cost as both a positive—increase in
the frequency of cases where all persistent hermaphro-
dite species are invaded (case (A), and (B) for high
dispersal rates)—and a negative effect—higher dispersal
rates are needed for the dioecious invasion—on the
competitivity of dioecious species relatively to their
equivalent hermaphrodite species.

8. Discussion

Mathematical criterions for the persistence of a
population in isolation (Eq. (5)), and for the reciprocal
invasions of equivalent hermaphrodite and dioecious
species (Eq. (7)) show that recolonizing local patches
freed by the death of adults is a key point of plant
demography. This leads to a demographic disadvantage
for dioecious species, for which recolonizing patches
freed by males relies on seed dispersal. For dioecy to be
favorable, females must produce enough seeds (¢) to
make up for the absence of seed production by males as
found by previous models aiming directly at studying
the evolution of dioecy in plants (Charnov and Maynard
Smith, 1976; Charlesworth and Charlesworth, 1978).
Besides, it is obvious that the longer the seed dispersal
distance, the more likely the recolonization of local
patches freed by the death of males. Our analytical
model only permits to distinguish between locally and
globally dispersed seeds and the spatial pattern of
individuals is not considered. Yet, when dispersal rate
increases, the number of seeds reaching each cell
becomes more homogeneous (if d=1 then y, =4
Eq.(1)). For this reason, efficient seed dispersal
diminishes the impact of the seed-shadow handicap.
Dioecy also tends to be more favorable than hermaph-
roditism for species with high survival rates. This is due
to dispersal stochasticity which leads to the existence at
equilibrium of a non-null proportion of empty local
patches depending on all life-history parameters
(Eq. (4)). This results in invasion criterions depending
on this proportion of empty patches, and thus depend-
ing on all life-history parameters (Eq. (7)). In this way,
empty patches are responsible for the possibility to make
up for the seed-shadow handicap by a long life span.

These results do not only mean that if a dioecious
species increases its dispersal or survival rate it is more
likely to persist or to invade a hermaphrodite species
having fixed parameters values. We compare the
persistence and the competitive ability of dioecious
and hermaphrodite species taking the same life-history
parameters, as if dioecious individuals were mutants of a
resident hermaphrodite population. Consequently, our
results suggest that the seed-shadow handicap disap-
pears when the survival or the dispersal rate is high
enough.

Decreasing fecundity and switching to more aggre-
gated seed distributions increase the number of empty
patches and dispersal stochasticity. In these cases the
persistence criterion becomes more restrictive, i.e.
persistence becomes only possible for lower mortality
rates. It becomes easier for the dioecious species than for
the hermaphrodite species to persist. Mortality becomes
more important than dispersal for the relative compe-
titivity of equivalent dioecious and hermaphrodite
species. Although a dispersal cost does not increase
dispersal stochasticity as expressed in the persistence
criterion, increasing this cost also increases the fre-
quency of cases where low mortality rates are required
for persistence and where all persistent hermaphrodite
species are invaded by their equivalent dioecious species.
Taken together, the link between dioecious invasion and
mortality is intuitively due to two causes. First, the
shorter a life-cycle, the more often a species depends on
dispersal, dispersal stochasticity and dispersal cost for
the recolonization of patches freed by adult death.
Second, due to the difficulty to recolonize male patches,
dioecious species depend more than hermaphrodite
species on dispersal and dispersal stochasticity.

At first sight, our conclusions contradict Heilbuth
et al. (2001) who found that the maintenance of dioecy is
possible only if the dioecious species increases the fitness
of the seeds or the dispersal distance relative to the
hermaphrodite species, and that increasing the survival
rate of a dioecious species competing with an hermaph-
rodite species only increases its time to extinction. The
reason for this discrepancy maybe in their choice of ¢ =
2, while we have demonstrated that ¢ >2 is a necessary
condition for dioecy to be favorable. Wilson and Harder
(2003) do not find any effect of mortality on the relative
competitivity of equivalent dioecious and hermaphro-
dite populations. This is due to their assumption that
every site is reached by a few seeds, while we have shown
that the effect of mortality is due to imperfect dispersal,
i.e. some sites are not reached by any seed. The
discrepancy between the two models is also due to
Wilson and Harder not assessing competitivity using
invasion criterions.

We have shown that the seed-shadow handicap
should lead for dioecious species to lower capability to
invade a hermaphrodite population and to avoid an
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invasion especially when they have low dispersal and
survival rates. This is likely to lead to higher extinction
rates for dioecious species than for hermaphrodite
species (Heilbuth et al., 2001). This could also lead to
the observed correlations between dioecy and ecological
traits (Bawa, 1980; Thomson and Brunet, 1990). This
interpretation is supported by empirical data showing
that dioecious lineages do experience higher extinction
rates (Heilbuth, 2000).

As Pannel and Barrett’s and Heilbuth et al.’s models
(Pannell and Barrett, 1998; Heilbuth et al., 2001), our
model considers neither the genetic determinism of
sexual expression, nor gene exchanges between her-
maphrodite and dioecious individuals. However, con-
trary to earlier studies (Heilbuth et al., 2001; Wilson and
Harder, 2003), we have used the criterion for the
invasion of a resident hermaphrodite species by dioe-
cious individuals initially at a very small density. Since
these individuals have the same life history parameters
as the resident hermaphrodite individuals they can be
considered as dioecious mutants. This invasion criter-
ion, the so-called invasion fitness, should lead to better
estimations of fitness (Metz et al., 1992) than precedent
results involving the competition of a dioecious species
and a hermaphrodite species initially at equal densities.
This invasion fitness is the base of the adaptive dynamics
approach which has been shown to model correctly the
evolution of traits and speciations, initially in haploid
population (Dieckmann, 1997), and more recently in
diploid sexually reproducing species (Kisdi and Geritz,
1999; Kisdi and Geritz, 2000).

Thus, however we interpret our model, our results
help to explain the correlation observed between dioecy
and perennial life history (Bawa, 1980; Thomson and
Barrett, 1981). Dioecy would be more frequent in
perennial species and especially in trees, than in annual
species, because, due to the seed-shadow handicap,
dioecious species compete more efficiently with her-
maphrodite species when they are long-lived. We found
that equivalent dioecious and hermaphrodite species are
never able to invade each other reciprocally. According
to the adaptive dynamics interpretation (Dieckmann,
1997), this suggests that the evolution of dioecy under
the seed-shadow handicap constraint should not lead to
speciation because stable coexistence is not possible.
However, tackling thoroughly this issue would require
studying jointly the adaptive dynamics of dioecy/
hermaphroditism, dispersal and mortality rate.

The seed-shadow handicap could also explain partly
why the general frequency of dioecious species is low,
probably between 4% and 6% (Bawa, 1980; Renner and
Ricklefs, 1995). The specialization of individuals into
male and female reproductions is likely to result in an
increase in female fecundity at the population scale
(either due to higher resource use efficiency or to
inbreeding avoidance). Yet, if this increase is small,

dioecy is only favorable for a low proportion of species
having a high dispersal rate and a long life-span. In this
context, understanding the evolution of dioecy and
testing for the validity of our results would require new
empirical studies comparing the seed dispersal efficiency
and the longevity of dioecious and hermaphrodite
species and assessing the increase in realized fecundity
resulting from the segregation of male and female
reproductions on different individuals.
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