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Abstract The international 4 per 1000 initiative aims at
supporting states and non-governmental stakeholders in their
efforts towards a better management of soil carbon (C) stocks.
These stocks depend on soil C inputs and outputs. They are
the result of fine spatial scale interconnected mechanisms,
which stabilise/destabilise organic matter-borne C. Since
2016, the CarboSMS consortium federates French researchers
working on these mechanisms and their effects on C stocks in
a local and global change setting (land use, agricultural prac-
tices, climatic and soil conditions, etc.). This article is a syn-
thesis of this consortium’s first seminar. In the first part, we

present recent advances in the understanding of soil C
stabilisation mechanisms comprising biotic and abiotic pro-
cesses, which occur concomitantly and interact. Soil organic
C stocks are altered by biotic activities of plants (the main
source of C through litter and root systems), microorganisms
(fungi and bacteria) and ‘ecosystem engineers’ (earthworms,
termites, ants). In the meantime, abiotic processes related to
the soil-physical structure, porosity and mineral fraction also
modify these stocks. In the second part, we show how agri-
cultural practices affect soil C stocks. By acting on both biotic
and abiotic mechanisms, land use and management practices
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(choice of plant species and density, plant residue exports,
amendments, fertilisation, tillage, etc.) drive soil spatiotempo-
ral organic inputs and organic matter sensitivity to
mineralisation. Interaction between the different mechanisms
and their effects on C stocks are revealed by meta-analyses
and long-term field studies. The third part addresses upscaling
issues. This is a cause for major concern since soil organic C
stabilisation mechanisms are most often studied at fine spatial
scales (mm–μm) under controlled conditions, while agricul-
tural practices are implemented at the plot scale. We discuss
some proxies and models describing specific mechanisms and
their action in different soil and climatic contexts and show
how they should be taken into account in large scale models,
to improve change predictions in soil C stocks. Finally, this
literature review highlights some future research prospects
geared towards preserving or even increasing C stocks, our
focus being put on the mechanisms, the effects of agricultural
practices on them and C stock prediction models.

Keywords Soil organic C . C dynamics . Stabilisation
mechanisms .Mineralisation . Agricultural practices .
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1 Introduction

The increasing atmospheric concentration of greenhouse gas-
es (GHG), particularly those containing carbon (CO2, CH4), is
a consequence of human activities and is associated with cli-
mate change. Anthropogenic carbon emissions are partially
balanced by carbon (C) sinks in oceans, vegetation and soil
(Le Quéré et al. 2015). Soils contain approximately three
times more C than the atmosphere (2400 vs. 800 GtC)
(Jobbágy and Jackson 2000), in the form of organic C borne
in organic matter (OM). On decadal time scales, soils can
serve as a C sink or source depending on their properties, on
the climate, land use, etc. (Eglin et al. 2010).

Global models linking the atmospheric CO2 concentration
to temperature show that a 3.5–4 Gt/year decrease in atmo-
spheric C would limit the temperature increase to +1.5/2 °C by
2050 (Meinshausen et al. 2009; Minasny et al. 2017), i.e. the
threshold beyond which climate change would have a signif-
icant impact (IPCC 2013). This annual decrease in the atmo-
spheric CO2 concentration could be fulfilled by annually in-
creasing C stocks in the top 30 cm soil horizon by 0.4% (4 per
1000) (Balesdent and Arrouays 1999; Paustian et al. 2016).

In this context, the 4 per 1000—Carbon Sequestration in
Soils for Food Security and the Climate initiative, launched by
France in 2015 ahead of COP21 in Paris (http://4p1000.org/),
aims to bring together governmental and non-governmental
stakeholders devoted to improving soil C stock management.
Positive effects on food security and climate change are ex-
pected through the collective objective of increasing C stocks
on a global scale in agricultural areas (croplands, grasslands,
forests), on which human action can be oriented towards C
storage (Paustian et al. 2016). Indeed, increasing soil OM
stocks is also beneficial for soil fertility, since OM
mineralisation might be a source of nutriments for plants.
But this requires implementing agricultural practices adapted
to local conditions that will increase soil C inputs, with out-
puts remaining stable or decreasing, thus maximising soil C
storage.

Soil OM is not homogeneous, and some OM is quickly
mineralised after entering the soil, while some persists for very
long periods (Schmidt et al. 2011). Conceptual pools were
sometimes associated to functional pools tentatively separated
from soils according to chemical or physical fractionation
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(e.g. Balesdent 1996; Zimmermann et al. 2007; Crow et al.
2007;Moni et al. 2012). In recent years, the significance of the
chemical fractions obtained after the so-called humic sub-
stances separation have been questioned since they are prob-
ably artefacts formed during the drastic chemical extraction
treatment (Schmidt et al. 2011). Reconciliating conceptual
and experimental pools of soil C with different dynamics
is still a matter of research, especially when soil organic
matter is now accepted as a continuum of organic mole-
cules possibly associated with minerals (Lehmann and
Kleber 2015).

Three soil conceptual C pools are generally defined accord-
ing to their degradation rate (Fig. 1) (von Lützow et al. 2008).
Labile OM turnover occurs within a day to a year. OM turn-
over in the intermediate pool occurs within a few years to
decades. Both pools originate predominantly from plant, ani-
mal, bacterial and fungal residues. The intermediate pool is
also supplied by OM degradation products from the labile
pool. This OM pool is rather active with rather fast turnover,
so it is highly influenced by soil management practices.
Finally, the turnover of the stable OM pool occurs on time
scales ranging from decades to centuries. It originates from
labile and intermediate pools and involves most of the soil
organic C (Torn et al. 2009). It consists of plant, animal, bac-
terial or fungal residues and microbial metabolic products.
OM in the stable pool can be found in aggregates and/or
adsorbed on mineral surfaces.

The challenge for the 4 per 1000 initiative is to increase the
size of the intermediate and stable C pools in order to maxi-
mise the sustainability of additional C storage, i.e. maximising
the residence time of this additional C in soil. C storage/
release in these reservoirs is driven by biotic and abiotic mech-
anisms that operate at fine spatial scales within the soil
organomineral matrix. It is essential to understand these mech-
anisms and interactions so as to be able to anticipate and
control changes in soil C contents in an ever-evolving envi-
ronment (changes in land use, agricultural practices, climatic

or edaphic conditions, etc.). Many research groups are ad-
dressing these scientific challenges while striving to overcome
scientific knowledge gaps on these mechanisms. However, it
is hard to compare this information on various spatiotemporal
scales, which has led to the creation of a national research
network in France (to be expanded internationally) to federate
the strengths of our scientific community on this issue.

The CarboSMS (Carbon StabilizationMechanisms in Soil)
research network was launched in late 2015 and currently
consists of about 110 members. Some 70 researchers attended
the CarboSMS kickoff meeting at the Ecole Normale
Supérieure (ENS) in Paris on 10 March 2016. The present
article summarises the outcome of this meeting. In the first
part, we present recent advances on the mechanisms involved
in soil organic C sequestration and then discuss the effects of
agricultural practices on these mechanisms in the second part.
Finally, in the third part, we show how it is essential to account
for these mechanisms in global models and define indicators
to describe C dynamics in order to enhance the prediction of
the patterns of change of soil organic C stocks.

2 Soil C storage mechanisms: state of the art

Two main types of mechanisms influence the stabilisation/
destabilisation of soil organic C: biotic mechanisms related
to living soil biomass and soil biodiversity (plants, fauna, mi-
croorganisms) and abiotic mechanisms (localisation in the soil
physical structure and degradation/stabilisation hotspots,
organomineral interactions). For the sake of clarity, these
mechanisms will be discussed successively in the following
section, although they occur simultaneously in soils, combin-
ing or neutralising their effects.

2.1 Action of living biomass on soil organic C dynamics

2.1.1 Plants, rhizosphere and soil organic C
storage—importance of root systems

The effects of plants on soil OM are twofold. First, as auto-
trophic organisms, plants are the main source of soil organic C
through their litter production (shoots and roots), root exu-
dates (released through passive and active mechanisms) and
via symbiotic (nitrogen-fixing and mycorrhizal) associations.
Second, plants contribute to soil OM stabilisation mechanisms
by producing poorly degradable compounds and by promot-
ing stable aggregate formation. By limiting erosion, plants
also contribute to soil OM conservation.

Plants have a broad range of root systems and their influ-
ence on soil OM varies with the plant species and root func-
tional traits (i.e. architecture, morphology, physiology, chem-
ical composition and symbiotic associations, Fig. 2).

Fig. 1 Conceptual pools of soil C depending on its turnover time: labile,
intermediate and stable pools
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OM fluxes from plants to soils C inputs to the soil consist of
above- and belowground litter (leaves, branches, stem,
roots…), but also of rhizodeposits and of compounds that
are directly transferred to mycorrhizal fungi. Root litter con-
tributes about one third of total litter inputs in grassland soils
and half in forest soils (Freschet et al. 2013). Rhizodeposition
represents about 11% of the C assimilated by plants or 27% of
that allocated to roots (Jones et al. 2009; Balesdent et al.
2011). The type and intensity of mycorrhizal associations,
and therefore of C transfers to mycelial hyphae, depend re-
spectively on the plant phylogenetic identity and on soil fac-
tors, especially on the availability of soil nutrients
(Soudzilovskaia et al. 2015).

Some recent and debated studies suggest that belowground
inputs largely contribute to OM, which is stabilised in soils on
the medium to long term (Balesdent and Balabane 1996;
Kuzyakov and Domanski 2000; Mendez-Millan et al. 2010;
Clemmensen et al. 2015), especially in deeper soil horizons
(Rasse et al. 2005; Rumpel and Kögel-Knabner 2011;
Mendez-Millan et al. 2012). In particular, the study by

Jobbágy and Jackson (2000) showed that the vertical root
distribution corresponds to that of soil organic C for different
plant species and soil types. Indeed, root litter decomposition
is generally 30% slower than leaf decomposition (Birouste
et al. 2012; Freschet et al. 2013). In addition, aboveground
litter inputs are only partly transferred into the mineral soil
(Garten 2009), where the decomposition rate decreases with
increasing depth (Garcia-Pausas et al. 2012; Poirier et al.
2014; Prieto et al. 2016).

The contribution of belowground input to C storage occurs
through the persistence of plant residues or via the stimulation
of soil microbial activity and the increase of the contribution
of microbial necromass to the slow cycling soil OM pools
(Beniston et al. 2014; DuPont et al. 2014; Lange et al. 2015;
Morriën et al. 2017).

The architecture and rooting profile of species are thus
critical traits that control the amount and location of C inputs
in the soil profile. Amongst herbaceous plants, monocots gen-
erally produce greater root biomass than forbs (Poorter et al.
2015) and have higher fine root densities (Craine et al. 2003),

Fig. 2 Differences in functional traits and symbiotic associations between different plant species influence soil organic matter stabilisation. Adapted
from Freschet et al. (in press)
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suggesting larger C inputs to soil. Lange et al. (2015) also
demonstrated that higher plant diversity increases rhizosphere
carbon inputs.

Quality of OM inputs and impact on their decomposition
rate The chemical composition [e.g. concentration in C, lignins,
nitrogen (N) and manganese (Mn)] of aboveground and below-
ground litter inputs and root exudates varies markedly between
plant species and influences OM decomposition kinetics on time
scales ranging from year to decade (Jones et al. 2009; Machinet
et al. 2011; Birouste et al. 2012). It is commonly recognised that a
high lignin content leads to the accumulation of particulate OM
in the soil (Cotrufo et al. 2015) and increases the plant residue
contribution to the intermediate OM pool (Fig. 1). The litter Mn
content stimulates lignin degradation through the formation of
Mn peroxidases involved in lignin oxidation (Berg 2014;
Keiluweit et al. 2015a). High N levels in plant litter and residues
generally increase their initial decomposition rate, and result in
the accumulation of microbial residues that persist in the soil. At
the same time, high N levels in plant residues inhibit the specific
decomposition of lignins (Berg et al. 2010; Dignac et al. 2002;
Martins and Angers 2015), probably due to the recombination of
Nwith partially decomposed lignin molecules (Berg et al. 2010).

The type and intensity of mycorrhizal associations strongly
influence the OM fate in soils (Fig. 2) (Clemmensen et al.
2013, 2015). Roots colonised by ectomycorrhiza, as well as
mycelial hyphae from both ecto- and endomycorrhiza, decom-
pose more slowly than non-mycorrhizal roots (Langley et al.
2006). Moreover, mycorrhizal hyphae differ in their morpho-
logical (diffuse vs. rhizomorphic) and biochemical (hyaline
vs. melanised) characteristics (Fernandez and Kennedy
2015). Melanised compounds could be involved in fungal
OM persistence in soils (Fernandez et al. 2016). Several recent
studies suggest that the chemical composition of OM inputs may
not explain their persistence in soils beyond a decade, but has an
impact on the C pool cycling over year to decade. Over longer
time scales, this persistence would depend more on environmen-
tal conditions (Amelung et al. 2008; Derrien et al. 2006;
Thevenot et al. 2010; Schmidt et al. 2011; Andreetta et al.
2013; Lehmann and Kleber 2015; Mathieu et al. 2015).

Impact of plant residue inputs on soil OM degradation
(priming effect) Fresh OM inputs that are easily used by soil
microbial decomposers, such as root exudates, leachates and
the labile portion of litter, can also stimulate native soil OM
degradation. This so-called priming effect can be explained by
three potentially co-occurring mechanisms (Löhnis 1926;
Fontaine et al. 2004, 2007; Blagodatskaya and Kuzyakov
2008): (1) increased activity and development of microbial
communities specialised in acquiring labile resources (r-
strategists) resulting in increased soil enzymatic activities with
potentially negative effects on soil OM storage; (2) stimula-
tion of microbial communities adapted to the degradation of

less degradable substrates (K-strategists), which depends on
the nutrient availability in soils (Fontaine et al. 2011; Derrien
et al. 2014); and (3) the action of root exudates (e.g. oxalic
acid) disrupting soil organomineral associations and providing
microorganisms with access to previously stabilised organic
compounds (Keiluweit et al. 2015b).

Aggregate stability and soil layer cohesion Plants contribute
to the formation of stable aggregates (OM protected from degra-
dation, see Section 2.2.1 below) in soil through fine roots and
mycorrhizal associations (Tisdall and Oades 1982). High fine root
and mycelial hyphae densities improve aggregate stability (Fig. 2)
(Wu et al. 2014; Erktan et al. 2016) through different mechanisms:
(1) increased production of root exudates, such as polysaccharides,
which act as a glue between soil particles, (2) better soil particle
trapping facilitated by the entanglement of roots and hyphae, (3)
increased wetting-drying cycle frequency in soil in relation to wa-
ter acquisition by roots, (4) input of plant residues containing
specific constituents (e.g. hemicellulose, suberin or phenolic com-
pounds) that contribute to macroaggregate stability and (5) stimu-
lation of the production of microbial metabolites involved in
microaggregate stability (Martens 2000; von Lützow et al. 2008;
Martins and Angers 2015). These processes vary between plant
species, but also depend on mycorrhizal fungi (Rillig et al. 2015).
Hyphae with a diffuse morphology, thus promoting soil–hyphal
interactions, could therefore have a greater impact on soil aggre-
gate formation than hyphae of rhizomorphic types (Fernandez and
Kennedy 2015). Finally, polysaccharides secreted by N2-fixing
bacteria also have a positive effect on soil aggregate formation
(Martins and Angers 2015).

Vegetation also contributes indirectly to soil C storage/
release by affecting soil physical structure. The density and
permanence of aboveground plant cover, as well as the plant’s
ability to accumulate litter, protect topsoil from structural
breakdown under the action of rainfall (Fig. 2) (Le
Bissonnais et al. 2005). Species with high root length density
(e.g. monocot species) and high root branching intensity (e.g.
annual species) within topsoil also limits surface erosion and
water runoff by promoting soil particle trapping (Gyssels et al.
2005). High root length density and fast root turnover also
promote the formation of galleries that increase the soil poros-
ity and limit water runoff (Gyssels et al. 2005). However, this
also increases soil moisture and may improve conditions for
soil OM decomposition in deeper soil horizons. Finally, spe-
cies with deep root systems, high root length density and high
root branching intensity can improve the cohesion between
soil layers and limit landslides (Stokes et al. 2009).

In conclusion, plants influence labile, intermediate and sta-
ble soil C pools. The effects of plants on soil OM stabilisation
and protection seem to be mostly positive, although the bal-
ance between positive and negative effects (i.e. over-
mineralisation) will differ according to interactions between
plants and the soil abiotic and biotic conditions. For instance,
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plant–microbe, plant–plant, plant–animal (herbivory-related)
and plant–soil interactions and their effects on C stabilisation
mechanisms have yet to be extensively explored.
Furthermore, although chemical recalcitrance has been shown
to have little influence on long-term soil C stabilisation
(Marschner et al. 2008; Schmidt et al. 2011; Dungait et al.
2012), it may influence the intermediate C pool (Fig. 1) and
the secondary consumption/transformation of these OMs by
macro- and microorganisms (Moorhead et al. 2014). The
search for new indicators of C dynamics linked to the chem-
ical composition of plant tissues could improve our knowl-
edge on these mechanisms. In this context, another major
challenge is to gain greater insight into the role of the func-
tional diversity of plants and of their symbionts in soil OM
stabilisation/destabilisation mechanisms. This challenge re-
quires stronger interactions between soil science, plant and
microbial ecology and the development of long-term compar-
ative laboratory and field studies before testing the relevance
of these mechanisms in models. To this aim, experimental
platforms (e.g. Ecotrons) and stable isotope techniques to dif-
ferentiate C fluxes would help to gain insight into how the
spatial distribution of roots and their symbionts can influence
OM stabilisation through mechanisms related to soil physical
properties, as presented in the Section 2.2 of this review.

2.1.2 Impact of living organisms on soil C sequestration—the
macrofauna case

The diversity of organisms hosted in soils is huge in terms of
size and function, encompassing megafauna, macrofauna, mi-
crofauna and microorganisms. Soil macrofauna includes or-
ganisms larger than 2 mm with high taxonomic diversity, in-
cluding millipedes (diplopoda and centipedes), woodlice,
earthworms, some springtails, numerous spiders and insects
(ants, beetles, termites), in addition to vertebrates such as ro-
dents (mice) and insectivores (moles, shrews). Functionally,
these animals can be grouped according to their diet
(zoophagous, herbivorous, root-feeding, saprophagous, soil-
feeding, etc.) or to their impact on their physical and chemical
environment. The best known group includes ‘ecosystem en-
gineers’ (earthworms, ants and termites). These organisms
often represent a large biomass in soils (individually for earth-
worms or socially for termites and ants), having a substantial
influence on soil OM dynamics (Chevallier et al. 2001)
(Fig. 3).

Processes promotingC stabilization In tropical and temperate
regions, it is widely recognised that long-termOM stabilisation is
controlled by interactions between microorganisms (fungi and
bacteria), ecosystem engineers (roots, earthworms, termites, ants)
and the soil mineral matrix (Lavelle 1997). Ecosystem engineers
act by fragmenting litter, incorporating it into the soil profile,

mixing soil by bioturbation in the profile and influencing dis-
solved OM transport (Bohlen et al. 2004).

Ecosystem engineers also promote C stabilisation by
forming biogenic structures (biostructures such as castings,
galleries, veneers, fungi wheels, termite or ant hills). The C
in these structures can be stabilised through organomineral
associations, depending on ingested OM composition (Vidal
et al. 2016). The type, shape and characteristics of these bio-
genic structures vary depending on species, land-use patterns
and seasons (Decaëns et al. 2001; Hedde et al. 2005; Mora
et al. 2005). The C distribution in these structures, e.g. con-
centration decreasing from the centre outwards, varies be-
tween species. For a given species, the C distribution in bio-
genic structures varies according to their habitats and depends
on the soil depth (Don et al. 2008; Jiménez et al. 2008). The
physical degradation rate of these structures influences C
stabilisation time scale, as well as nutrient release and avail-
ability in soils (Le Bayon and Binet 2006; Mariani et al.
2007a; Mariani et al. 2007b; Jouquet et al. 2011).
Furthermore, the type of OM (macro-debris, particulate
matter or microbial metabolites) and its location (intra- or
inter-aggregate), which differ between ecosystem engineers,
are also drivers of C dynamics in these biogenic structures
(Six et al. 2000; Bossuyt et al. 2004; Six et al. 2004;
Bossuyt et al. 2005).

Processes promoting C mineralisation The transit of soil
particles through the gut of macrofaunal organisms promotes
contact between microbes and OM, leading to alteration of the
chemical structure of the OM. This alteration occurs (1) by
selective digestion of peptide compounds which alters their
stability (Shan et al. 2010), (2) through biochemical changes
due to a succession of extreme pH or redox conditions
(Brauman 2000) or (3) by physical remodelling of the parti-
cles (West et al. 1991). Many groups of soil fauna are known

Fig. 3 Earthworm activity affects organic matter dynamics via litter
consumption and soil particle ingestion
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to stimulate microbial activity and OM mineralisation in the
short term (Brown 1995; Winding et al. 1997).

Micro- and meso-fauna also contribute to the decomposi-
tion of litter and plant debris, in that their activity regulates the
activity of the soil microbial communities. For example, the
grazing of bacterial-feeding protozoa or nematodes tends to
reduce the microbial density. However, it also stimulates the
activity of the microbial communities, which tends to increase
OM mineralisation rate. This is known as the microbial loop
principle (Bonkowski 2004).

In conclusion, trophic activity and the production of
biostructures by soil fauna, especially by the ecosystem engi-
neers, impact soil C dynamics: OM mineralisation is often
stimulated in the short term, but stabilised in the longer term.
As a result, the quantitative effects are highly variable (Fig. 3).
Further research is necessary to gain insight into and predict
these effects, while taking the functional traits of the organ-
isms and their environment into greater account. At larger
spatiotemporal scales, the functional domain defined by the
properties of biogenic structures (e.g. termitosphere,
myrmecosphere or drilosphere) strongly influences C storage
in the soil profile, which affects the overall ecosystem
functioning.

There is also a lack of knowledge about (1) the impact of
the biochemical quality of OM on its use by soil organisms
since the OM they ingest is chosen not only according to its
degradability but also to its stoichiometric composition, in
relation to decomposer needs; and (2) the digestive system
of organisms, its effect on microorganism selection and the
effect of this selection on biogenic structures. Little is also
known about the effect of changes in environmental condi-
tions (water and nutrient availability) on biogenic structures.
Research on the effects of cultivation practices (tillage, pesti-
cide use, etc.) on the soil fauna density and on their trophic
interactions that affect soil C stabilisation would also be nec-
essary (see Section 3).

Finally, future research on C stabilisation mechanisms in
soil hostingmacrofauna should assess the balance between the
beneficial effects of these organisms on C storage and their
negative effects due to the GHG they emit (CH4, N2O)
(Lubbers et al. 2013; Chapuis-Lardy et al. 2010). In the long
term, research projects should also consider the ability of soil
fauna to generally positively influence plant biomass produc-
tion (Scheu 2003), thus likely increasing soil OM inputs (see
Section 2.1.1).

2.1.3 Diversity and physiology of microorganisms—drivers
of soil C dynamics

Within soil decomposers, microorganisms are the most taxo-
nomically and functionally diversified component (Torsvik
and Øvreås 2002; Curtis and Sloan 2005). It is estimated that
1 g of soil can host up to 1 billion bacteria, representing

1 million species (Gans et al. 2005), and up to 1 million fungi
comprising up to 10,000 species (Hawksworth 1991; Bardgett
2005). However, the number of neighbouringmicroorganisms
with which a single bacterium interacts, within a distance of
about 20 μm, is relatively limited (120 cells on average)
(Raynaud and Nunan 2014).

By their activity, microorganisms play a very important
role in the ecosystem services provided by soils. At the eco-
system scale, soil microorganisms are vital with regard to (1)
nutrient recycling (N, phosphorus, sulphur, potassium, etc.),
essential for plant growth and ecosystem dynamics; (2) soil
OM storage, crucial for preserving the soil structure and fer-
tility; and (3) soil OM degradation, which could dramatically
change the global climate equilibrium (van der Heijden et al.
2008). Furthermore, microorganisms are the main source of
organic compounds stabilised in the long term (compared to
plants) (e.g. Simpson et al. 2007; Schimel and Schaeffer
2012), as indicated by studies using molecular biomarkers
such as sugars and amino sugars, proteins and lipids
(Derrien et al. 2006; Miltner et al. 2012).

The soil microbial compartment, despite its central role in soil
OM transformation, is still often considered as a group of ubiq-
uitous organisms with high functional redundancy (Nannipieri
et al. 2003), on the basis of the postulate put forward by
Beijerinck (1913) that ‘everything is everywhere, but, the envi-
ronment selects’. As such, microbial communities are still often
included in compartment models of soil C dynamics as a func-
tional black box generating fluxes whose intensity depends only
on abiotic factors such as temperature, humidity, pH, etc., thus
excluding the hypothesis that the diversity and composition of
microbial communities as well as trophic interactions (competi-
tion, commensalism, etc.) between populations can play a func-
tional role (McGill 1996; Gignoux et al. 2001).

This vision could be partly explained by the technical lim-
itations that have long hindered the characterisation of the vast
diversity of microbial communities in soils, thus preventing
(1) the identification of microbial populations involved in soil
OM degradation and (2) the assessment of the role of micro-
bial diversity in soil OM transformation. However, significant
progress has been made (Fig. 4), especially since the begin-
ning of the ‘omics’ era and the advent of molecular tools,
which are currently able to characterise the taxonomic and
functional diversity of communities in situ and without a
priori (Maron et al. 2011; Nagy et al. 2016). Recent studies
using these tools have suggested that microbial diversity is an
important parameter that can modulate soil OM turnover, and
thus the balance between soil C storage and atmospheric CO2

emissions (Tardy et al. 2015; Ho et al. 2014; Baumann et al.
2013; Bell et al. 2005). Future studies should improve the
overall understanding of microbial mechanisms involved in
this balance (complementary niches, facilitation, etc.).
However, other studies have indicated that diversity does not
have a role in the balance between C storage and CO2
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emissions (Wertz et al. 2006; Wertz et al. 2007; Griffiths et al.
2001 and Griffiths et al. 2008). Long-term studies at experi-
mental sites but also in monitoring networks at national or
international scales (Gardi et al. 2009) will help to gain insight
into the spatiotemporal variability of processes related to mi-
crobial diversity and their impact on soil organic C storage.

Advances in microbial ecological knowledge are crucial
for understanding how microorganisms use C and therefore
impact its long-term fate in soil (Schimel and Schaeffer 2012).
A substantial proportion of soil C originates from labile com-
pounds metabolised by microorganisms and stabilised as mi-
crobial residues in organomineral complexes (Miltner et al.
2012; Clemmensen et al. 2013; Cotrufo et al. 2015; Haddix
et al. 2016). The C use efficiency of microorganisms is used to
estimate, for a given substrate, the ratio between mineralised C
and C incorporated in soil OM. This C use efficiency varies
depending on the microbial species and their physiology, nu-
trient availability (N, phosphorus, sulphur, etc.) necessary for
microbial metabolism, interactions with the soil matrix and the
environmental conditions (temperature, pH, moisture, etc.)
(Manzoni et al. 2012; Mooshammer et al. 2014; Geyer et al.
2016; Lashermes et al. 2016). Moreover, it is likely to change
depending on the climatic and atmospheric conditions
(Allison et al. 2010; Schimel 2013; Sistla et al. 2014).

Considering the major contribution of microbial com-
munities in processes driving soil C dynamics, managing
the microbial component could be a lever for optimising

soil C storage (Jastrow et al. 2007). Future research
should aim at classifying the impacts of climate parame-
ters, land-use patterns and microbial diversity on C stor-
age, while also focussing on improving the models by
explicitly incorporating microbial diversity to improve
the prediction of soil C dynamics.

2.2 Abiotic soil organic C stabilisation mechanisms

2.2.1 Localisation in the physical structure of soil

Soil is a heterogeneous environment, which has an impact on
soil organic C dynamics. At the landscape scale, soil heteroge-
neity is driven by the soil texture and mineralogy, and by topol-
ogy and management practices. At the plot scale, agricultural
practices and plant species are the determinants of heterogene-
ity (Etema andWardle 2002; Chevallier et al. 2000). At the fine
process scale, the degree of heterogeneity depends on the soil
physical structure, which corresponds to the spatial arrange-
ment of solid particles (mineral particles, OM) and pores in
which fluids, decomposers and soluble compounds circulate
(Chenu and Stotzky 2002; Monard et al . 2012).
Understanding how the soil physical structure affects OM dy-
namics is crucial with a view to preserving or even increasing
organic C stocks in soils. On the one hand, climate change, and
especially the water regime, affects the environmental

Fig. 4 History and methodological developments in microbial ecology. Excerpt from Maron et al. (2007), with permission of Springer
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conditions at the microbial habitat scale, while on the other,
land use and agricultural practices markedly affect the soil
structure.

As mentioned above, biotic processes can have a great
effect on aggregation: plants with their roots, macrofauna
when they digest organic and mineral soil components togeth-
er, and microbes by acting on their close organomineral envi-
ronment at the nanoscale. Abiotic C stabilisation mechanisms
are thus highly linked to biotic mechanisms.

Soil organic C dynamics are slowed down by inclusion in
aggregates From the mid-twentieth century, experimental
studies have demonstrated that aggregation decreases the soil
OM mineralisation rate (Rovira and Greacen 1957).
Experiments were designed to measure CO2 production after
grinding of soil aggregates and to compare it to the CO2 emit-
ted by the same soil with preserved aggregates. The results
showed that grinding increased soil organic C mineralisation,
and that the rate increased with the fineness of the grinding.
Since then, many studies based on physical fractionation
methods have helped to isolate different types of soil aggre-
gates and understand their roles in protecting OM. By
analysing samples of soils that had undergone conversion
from a C3 to a C4 photosynthesis type of vegetation (or the
reverse), and using the difference in C isotopic composition
betweenOM fromC3 and C4 plant types, it was shown that (1)
the C residence time was greater when plant debris was in-
cluded in aggregates than when it was not associated with
aggregates, and (2) the C residence time in micro-aggregates
(<50 μm)was longer than in macro-aggregates (>50μm) (e.g.
Golchin et al. 1994; Besnard et al. 1996; Six et al. 1998; Six
and Jastrow 2002; Chevallier et al. 2004). However, the struc-
tural difference between micro- and macro-aggregates might
not be the only factor that could explain these contrasted OM
mineralisation rates because (1) the OM nature and quality
may differ in micro- and macro-aggregates, (2) micro- and
macro-aggregates might host different microbial communities
(Hemkemeyer et al. 2015) and (3) the stability of macro- and
micro-aggregates, which regulates the OM storage duration, is
not the same (Plante and McGill 2002). However, aggregates,
and especially micro-aggregates, are used as fractions to indi-
cate the degree of physical protection of C as estimates of the
pools involved in the compartment models on C dynamics at
multi-annual time scales (e.g. Zimmermann et al. 2007, for
RothC). Conceptual models describing C dynamics in differ-
ent aggregates, considering aggregate formation-destruction
cycles, have recently emerged, but their parameterisation is
not yet possible since these models are too complex and not
sufficiently constrained (Stamati et al. 2013).

Decomposers act on organic substrates in the soil pore
network OM mineralisation requires contact between the sub-
strates and decomposing microorganisms, or their enzymes, at

themicrometre scale of themicrobial habitat (Chenu and Stotzky
2002). Several recently developed techniques have helped gain
insight into the mechanisms by which the physical structure of
soil regulates OM mineralisation. Microtomography helps esti-
mate the size and shape of the pores and their degree of connec-
tivity. Nanoscale secondary ion mass spectrometry (nanoSIMS)
and synchrotron radiation [scanning transmission x-ray micro-
scope (STXM) and near edge x-ray absorption fine structure
(NEXAFS)] imaging can locate OM and microorganisms at
the micrometre scale, while also providing chemical information
complementary to that obtained through fluorescence microsco-
py studies of thin soil sections (Raynaud andNunan 2014). It has
been shown that OM-decomposer co-localisation accelerates
biodegradation (Vieublé Gonod et al. 2003; Pinheiro et al.
2015; Don et al. 2013), while accessibility of OM to microbes
might be a major driver of soil C dynamics (Dungait et al. 2012).
This contact can occur by substrate and enzyme diffusion and
advection, or via microorganism growth and mobility (Fig. 5).
Furthermore, the local environmental conditions (oxygen, pH,
water content, etc.) at the micrometre scale have to be favourable
for microorganism activity. The soil structure controls biodegra-
dation at the micrometre scale (Juarez et al. 2013). The
mineralisation rates of simple substrates thus depend on the size
of the pores in which they are located (Killham et al. 1993;
Ruamps et al. 2011) and could be related to the different micro-
bial communities present in these habitats (Hemkemeyer et al.
2015; Hatton et al. 2015).

In conclusion, by combining experimental approaches in-
volving microcosms, isotopic labelling, 3D imaging and
modelling, significant progress should be achieved in the
coming years in understanding how the soil structure controls
OM dynamics and incorporating these controls into models.
Studies at fine spatial scales will be particularly useful to link

Fig. 5 Organic matter biodegradation requires direct contact between
microorganisms or their extracellular enzymes and organic substrates,
and local conditions favourable for microorganisms. This transmission
electron microscopy image of a thin soil section shows that, even at the
micrometric scale, microorganisms and organic materials can be
physically separated (Chenu et al. 2014a)
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C storage mechanisms to the soil C saturation concept, as
discussed in the third part of this review (Section 4).

2.2.2 C stabilisation mechanisms involving organomineral
interactions

Mineral protection of soil OM—an old story The idea that
soil OM can be protected from the mineralising activity of
microorganisms by soilminerals emergedmore than 200 years
ago (Thaer 1811 in Feller and Chenu 2012). This protection
has been included in soil C dynamics models for over 70 years
(Henin and Dupuis 1945). Smaller minerals, mainly contained
in the clay particle-size fraction (less than 2 μm), most effi-
ciently protect OM. This particle-size class consists of a vari-
ety of minerals: clay minerals (phyllosilicates), as well as dif-
ferent forms ofmetallic oxyhydroxides and poorly crystallised
aluminosilicates (allophane or imogolite types). These finely
divided minerals protect OM by adsorption (e.g. Jones and
Edwards 1998) or by trapping OM within sub-micron aggre-
gates, thus physically protecting it from the degrading action
of soil microorganisms (Chenu and Plante 2006). The OM
degradation rate is also decreased, and stabilisation increased,
when organic molecules are located in parts of the pore net-
work (neck diameter between 10 and 1000 nm) that are satu-
rated with water, thus limiting oxygen and enzyme diffusion
(Zimmerman et al. 2004; Chevallier et al. 2010).

Chemical interactions and heterogeneous soil OM distri-
bution OM adsorption by soil minerals may derive from dif-
ferent types of interaction: anionic ligand exchange, cationic
ligand exchange, cationic bridges or so-called weak interac-
tions (including van der Waals forces, hydrogen bonding, hy-
drophobic interactions). The type of interactions involved de-
pends on the mineral phases and OM chemical functions (von
Lützow et al. 2006). Although theoretically these different
types of interactions are expected, it is however very difficult
to directly observe them in soil samples and to highlight any
chemical specificity of organomineral interactions using cur-
rent state-of-the-art techniques (Lutfalla 2015).

Moreover, direct observations on natural samples using
microscopic techniques combined with increasingly powerful
characterisation tools (atomic force microscopy, nanoSIMS,
STXM–NEXAFS, etc.) showed that OM is adsorbed on min-
eral surfaces in the form of patches and does not cover the
entire particle surface (e.g. Ransom et al. 1998; Chenu and
Plante 2006; Remusat et al. 2012; Theng 2012; Rumpel et al.
2015). An isotopic labelling study further revealed that newly
adsorbed OM preferentially binds to existing patches and not
to free mineral surfaces (Vogel et al. 2014). These results
suggest that the capacity of different minerals to protect OM
would depend on their ability to adsorb a large number of
patches. This could explain why the correlation between

specific mineral surfaces and their ability to protect OM is
poor or nonexistent (Kögel-Knabner et al. 2008).

High importance of low-crystallised mineral forms and
mineral weathering Andosol observations, chemical extrac-
tion results and fine-scale observations suggest that poorly
crystallised mineral forms (pedogenic oxides and amorphous
or slightly crystallised aluminosilicates) are particularly effi-
cient in stabilising soil OM (Torn et al. 1997; Kleber et al.
2015). They complex soil organic compounds to form
organomineral nano-complexes (noted here nanoCOMx), a
few nanometres to a few hundreds of nanometres in size,
which contain high C concentrations. They can be observed
by direct transmission electron microscopy analysis (Wen
et al. 2014). Close correlations between the metallic
oxyhydroxide and C contents have been highlighted using
indirect chemical extraction methods (Bruun et al. 2010;
Mikutta et al. 2006), thus demonstrating the importance of
nanoCOMx for soil OM stabilisation. NanoCOMx have
mainly been studied in controlled conditions whereby they
are synthesised by adsorption and co-precipitation (especially
for Fe and Al) in batch experiments, but further research is
needed on the identification and quantification of these mech-
anisms in soils (Kleber et al. 2015).

Andosols, which have a particularly high OM content, are
the systems of choice for studying nanoCOMx formation in
soils (Torn et al. 1997). The weathering of primary mineral
phases produces partially crystallised phases (proto-
imogolites), which complex the OM before reaching their
final crystalline growth stages (imogolite and/or allophane).
These proto-imogolite/OM interactions thus have a dual feed-
back effect: (1) they stabilise organic compounds over periods
of up to several thousands of years (Basile-Doelsch et al.
2005), and (2) they stop crystal growth of the secondary min-
eral phases (Levard et al. 2012). Based on these mechanisms,
a new conceptual model of soil OM stabilisation was pro-
posed to highlight the synergy between the continuous alter-
ation of minerals and nanoCOMx formation dynamics
(Basile-Doelsch et al. 2015) (Fig. 6). The findings of some
studies carried out on mineral surfaces tend to confirm this
model (Bonneville et al. 2011; Kawano and Tomita 2001).
Future research is needed to validate this model on various
mineralogical phases in different soil types.

Finally, unlike crystallised minerals, the kinetics of alter-
ation of poorly crystallised minerals in soils may span just a
few years to decades, which is of the same order of magnitude
as the time scales at which C dynamics are considered in the
climate change context. Contrary to general opinion, OM
mineralisation in organomineral complexes could well be
due to destabilisation of mineral phases, which are no longer
regarded as immutable at yearly to decadal timescales.
Keiluweit et al. (2015b) showed, for example, that some oxa-
late type constituents of root exudates destabilised
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oxyhydroxide minerals and released initially complexed na-
tive OM. These compounds, which become accessible to mi-
croorganisms, may be mineralised. The destabilisation of
nanoCOMx mineral components has also been shown in ag-
ricultural systems (Wen et al. 2014), and in some cases asso-
ciated with substantial OM loss.

Until recently, analytical methods have not been effective
to achieve sufficiently detailed characterisation of the organic
component of organomineral complexes to highlight differ-
ences depending on the mineral phases to which they are
associated. Future research on organomineral complexes will
benefit from recent progress in analytical methods. To en-
hance integration of theoretical knowledge of these com-
plexes, future studies on their formation and dynamics will
have to move from the laboratory to the field in order to
understand how these mechanisms are affected by agricultural
practices.

3 Mechanisms of OM dynamics affected
by agricultural practices

The soil C stock depends primarily on land-use patterns. For
French soils, Martin et al. (2011) showed that the 0 to 30 cm
mineral horizons contained on average 80 tC ha−1 under forest
and grassland, 50 tC ha−1 under crops and 35 tC ha−1 in vine-
yard soils (Table 1). Any land-use change therefore has a
marked effect on the C stock. Meta-analyses on this subject
have shownmassive C loss following the cultivation of forests
and grasslands. The meta-analysis of Guo and Gifford (2002),
based on 74 publications, showed that soil C decreases when
cropland replaces native forest (−42%) and pasture (−59%). It

also revealed a drop in C stocks from plantations to grassland
(−10%) and from native forest to plantations (−13%). The
rapid decrease in C stocks in cultivated soils can be explained
by the generally lower C inputs (Lal et al. 2004) and faster OM
mineralisation rates due to more intense tillage, which mixes
deeper soil horizons and partly destroys the aggregation (Wei
et al. 2014). However, soil C stocks increase after conversion
from native forest to pasture (+8%), crop to pasture (19%),
crop to plantation (+18%) or crop to secondary forest (+53%)
(Guo and Gifford 2002). Observations by Attard et al. (2016)
showed the asymmetry of the mechanisms: the loss of organic
C stocks after cultivation of grassland soil was fast while the
replenishment of these stocks was slow because it depends on
the slow installation and growth of plant roots in the previous-
ly cultivated soil. Furthermore, recent observations showed
that C stock evolution related to land-use changes are
mediated by soil parent material (Barré et al. 2017): the dif-
ferences in soil C stocks between old forests and croplands
were higher on calcareous bedrocks than on loess deposits.

Operationally, these results concerning the impacts of land-
use changes on soil C stocks underline the fact that the spatial
patterns of land-use or rotations must be considered with cau-
tion. However, soil C stocks also depend on the agricultural
practices implemented, which determine the input and output
C fluxes in soils, depending on soil and climatic conditions.
The following section identifies the main agricultural practices
and examines their impact on the soil C stock.

3.1 Review of the main agricultural practices

Variousmanagement operations (Table 1) can be implemented
depending on the land use. The following categories can be

Fig. 6 Conceptual models of organomineral interactions differing with
regard to the mineral surface properties. a In conventional models,
organic compounds form a series of layers, and the turnover rate
decreases when the molecule gets closer to the mineral surface. b The
model proposed by Basile-Doelsch et al. (2015) considers that the

alteration of minerals generates nanometre amorphous minerals. Their
high reactivity and specific surface area promote their interactions with
organic compounds (excerpt from Basile-Doelsch et al. 2015, with
permission of ACS Publications)
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distinguished: choice of plant species, vegetation density,
plant export intensity (crop residues returned to the soil or
exported, grazing/mowing of grasslands, export of harvest
residues in forest ecosystems, etc.), addition of exogenous
OM, irrigation, fertilisation, tillage, etc. These practices main-
ly control the spatiotemporal distribution of OM inputs to soil,
along with the sensitivity of OM to mineralisation, both of
which affect soil OM stocks (Jastrow et al. 2007).

Choice of plant species The choice of plant species has an
effect on the chemical quality of soil OM (Rumpel et al. 2009;
Armas-Herrera et al. 2016) and modifies the processes
governing the dynamics of soil organic C. In forests, for ex-
ample, although aboveground litter production is similar for
softwood and hardwood trees, the litter degradation mecha-
nisms differ (Berg and Ekbohm 1991; Osono and Takeda
2006). In deciduous forest, litter generally decomposes faster
and the residues are more deeply incorporated in the soil pro-
file because of the biochemical properties of their tissues and
their impact on the soil chemistry, thus impacting, for exam-
ple, the presence and activity of earthworms (Augusto et al.
2015). As noted above (Section 2.1.2), these organisms have a
strong influence on soil OM dynamics. In grasslands, le-
gume–grass associations promote soil C storage (Li et al.
2016). In agricultural systems, varieties allocating more re-
sources to the harvested part (grain) are often selected to in-
crease yields. This selection decreases the biomass allocated
to vegetative parts, including roots which contribute more
than other plant organs to the intermediate OM pool
(Section 2.1.1).

Soil OM inputs The intensity of plant harvesting for planta-
tion management directly impacts plant-derived soil OM in-
puts (leaf litter, crop residues, roots, etc.). In grasslands, these
inputs depend on the number of grazing animals and the mow-
ing frequency (Conant et al. 2001); in agricultural systems, on
crop residue export (Saffih-Hdadi and Mary 2008); in forests,
on the thinning regime and the exportation of branches of less
than 7 cm diameter (called harvest residues) (Jandl et al.
2006); inputs in urban soils depend on the mowing frequency
in parks and on the removal of fallen leaves (Qian and Follett

2002; Lal and Augustin 2011). Exogenous OM is sometimes
added to reduce chemical input and to recycle waste.
Exogenous OM may be animal manure (Chotte et al. 2013),
compost or sewage sludge (Hargreaves et al. 2008; Lashermes
et al. 2009), or pyrogenic residues (biochar) (Steiner et al.
2007; Andrew et al. 2013).

The frequency and spatial distribution/localisation of soil
OM inputs differ amongst land uses. It is assumed that vege-
tation cover present throughout the year increases soil OM
inputs, as it is the case for permanent grassland, under grass
bands or when intermediate crops are cultivated during the
winter season. C dynamics in soils under ley grasslands show
a legacy grassland effect during cropping years, leading to
longer residence times of C in their fine fractions compared
to continuously cropped soils (Panettieri et al. 2017). Soil OM
inputs in forests are also a function of the age of trees at cutting
(input of younger trees being lower than input of older ones).
Spatially, the distribution of plant inputs may be modulated
(Fig. 7) by seeding (or planting) density, by the localised ad-
dition of composts, by planting of grass bands in vineyards, by
growing hedges in croplands or rows of trees in agroforestry
systems or by aesthetic management of parks and gardens in
urban areas (Freschet et al. 2008; Strohbach et al. 2012; Kulak
et al. 2013; Cardinael et al. 2015).

These practices can increase the quantities of C added to
the soil, but the extent to which they also affect C stabilisation
mechanisms is unclear. Additional soil OM mineralisation
can, for example, be observed following a fresh OM input
(see the priming effect paragraph, Section 2.1.1).

Practices that stimulate both primary production and de-
composer activity Tillage, soil decompaction after heavy ma-
chinery passages or removal of stumps after clear-cutting a
forest stand are also practices that impact not only primary
production and soil OM inputs but also OM mineralisation
and therefore soil to atmosphere C fluxes. These operations
affect soil properties, likely including its structure, decompos-
er activity (Lienhard et al. 2013) and consequently soil organic
C stocks (see Section 2). Primary production and decomposer
activity are also impacted by facilities for soil and water con-
servation in dry areas, by the use of inorganic amendments or

a bFig. 7 The spatial distribution of
organic matter can be modulated
by localised compost inputs (a
Madagascar) or by setting up
rows of trees in the plots (b
Agroforestry, Melle, France).
Source: T Chevallier and R
Cardinael
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by systematic fertilisation in some cropping regions or in ur-
ban gardens (Miller et al. 2005; Edmondson et al. 2012).
However, for economic reasons, fertilisation practices are very
limited in forests or in poor agricultural areas.

3.2 Impact of agricultural practices on soil organic C
storage

French experimental field studies on long-term variations
in soil C stocksNumerous studies have already been conduct-
ed on the effects of agricultural practices on soil C storage.We
present the results of three recently published experiments
located in France spanning decadal to multi-decadal periods.
One study concerns forests under conventional management,
while two were focused on large-scale cropping systems with
exogenous OM amendments or reduced tillage.

Changes in C stocks in forest soils were monitored in the
French Permanent Plot Network for the Monitoring of Forest
Ecosystems (RENECOFOR) by repeated measurements in 102
plots managed by the French National Forestry Office at 15-year
intervals (Jonard et al. 2017). The observations revealed an av-
erage annual increase in C stock of 0.34 t ha−1 year−1. This
precisely corresponds to a 4‰ annual increase (average stocks
in lit ter and in the top 40 cm soil horizon were
81.6 tC ha−1 = 0.34/81.6 = 0.004). The stock increase was larger
in coniferous than in deciduous forests (Jonard et al. 2017) and
was not linked to increased aboveground inputs.Weak linkswere
noted with the litter quality (C/N), the history and management
of the stand (regular vs. irregular forests).

The effects of the addition of exogenous OM were studied in
the Qualiagro long-term field experiment, located at
Feucherolles, near Paris (France). Various composts andmanures
were applied at a rate of 4 t ha−1 every other year. The soil C
contents, measured every other year for 15 years, showed signif-
icant C accumulation, i.e. 0.20–0.50 tC ha−1 year−1 for soil
amended with manure and urban compost (Peltre et al. 2012).
These organic amendments thus had a positive effect on C stor-
age, in addition to economic and agronomic benefits (improve-
ment of soil fertility and physical structure). However, negative
effects were observed, particularly related to fluxes of elements
other than C. Organic amendments often contain large quantities
of N and P, thus inducing a risk of over-fertilisation, N2O emis-
sion and NH3 volatilisation. Organic amendments also present a
risk associated with the organic contaminants, metal contami-
nants or pathogens that they may contain (Smith 2009). It is
necessary to better characterise the OM input, the reversibility
of its accumulation and effects on the dynamics of other elements
(N, P, etc.) in order to better understand and predict the positive
and negative effects of waste-derived organic amendments
(Noirot-Cosson et al. 2016).

The long-term effects of tillage were studied for 41 years in
a large-scale cropping area in the Paris Basin (Boigneville)
(Dimassi et al. 2014). In this field experiment, no significant

effects of tillage or crop management were observed on C
stocks over 41 years. Reducing tillage, however, resulted in
rapid soil C accumulation in the first 4 years, and then the C
stocks only slightly changed over the next 24 years
(+2.17 tC ha−1 with reduced tillage, +1.31 tC ha−1 with no
tillage), but additional stored C was later lost (Dimassi et al.
2014). The lack of ploughing caused soil OM stratification
and changes in soil functioning, nutrient availability, soil wa-
ter holding capacity, microbial diversity, the amount of fresh C
incorporated in the soil and, accordingly, the priming effect.
The water regime could be the determining factor of C
storage/destocking in these situations. OM mineralisation
was favoured during wet years or when the soils were irrigat-
ed, particularly at the surface where the majority of C accu-
mulated when ploughing was stopped. Conversely, C accu-
mulated during dry years. As already suggested by Balesdent
et al. (2000), this study highlighted the importance of identi-
fying, quantifying and classifying the different mechanisms
according to the soil and climatic conditions in order to be
able to model and predict soil organic C stocks under different
agricultural and forestry practices.

Meta-analyses Meta-analyses are useful for comparing re-
sults obtained in various long-term studies in similar exper-
imental fields to determine whether the processes triggered
by a specific agricultural practice are widespread. Hereafter,
we present some examples of recently published meta-
analyses on the impacts of irrigation (Zhou et al. 2016),
tillage (Virto et al. 2012), liming (Paradelo et al. 2015) and
fertilisation (Han et al. 2016; Yue et al. 2016) on soil C
stocks.

The findings of a meta-analysis by Zhou et al. (2016) sug-
gested that the water availability changed the plant C alloca-
tion and the soil OM turnover. Drought led to an increase in
the root/shoot ratio and a decrease in heterotrophic soil respi-
ration, while irrigation led to an increase in soil respiration but
also to higher biomass inputs.

Regarding soil tillage, the meta-analysis of Virto et al.
(2012) shows the same trends as the long-term observation
by Dimassi et al. (2014). No-tillage had little effect on the soil
organic C stocks (see also Luo et al. 2010). However, second-
ary practices of no-till cropping systems (implemented to off-
set the lack of tillage, as the choice of cropped species and the
number of rotations) showed positive effects on C storage
(Virto et al. 2012).

Paradelo et al. (2015) reviewed the results of 29 studies
considering the effects of liming on soil C stocks. Their
meta-analysis did not reveal an unambiguous effect of liming
on C storage. The compiled studies had been carried out under
a wide range of experimental conditions. Moreover, they did
not allow quantification of the three key processes driving the
dynamics of organic C in soils affected by liming: crop
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production, decomposer activity and soil structure (see
Section 2).

Yue et al. (2016) compared 60 studies on the impact of N
inputs on C stocks. Their meta-analysis highlighted an in-
crease in soil C inputs and no change in output fluxes related
to increased N inputs. Regarding organic C stocks, the results
showed an increase in C in the organic horizons and the soil
solution, but no change in the C stock in the mineral soil
horizons, contrary to the findings of the meta-analysis on for-
est soils conducted by Janssens et al. (2010). However, meta-
analyses average the results obtained in different contexts and
with different timescales, which may overlook effects that
could be observed at a given site. The meta-analysis of Han
et al. (2016) confirmed the results of Yue et al. (2016). If
fertilisation is complemented by organic amendments, then
the increase in C stocks would be even higher since organic
amendments directly contribute to soil OM stocks.

In conclusion, due to the lack of knowledge on the mech-
anisms impacted by agricultural practices, it is hard to predict
their effects on soil C stocks. Agricultural practices, which
increase soil OM inputs, are often considered to have a posi-
tive impact on C storage (Pellerin et al. 2013; Chenu et al.
2014b; Paustian et al. 2016). However, their impact on mech-
anisms that contribute to the storage/destocking of soil C (see
Section 2) are not yet clearly understood. Meta-analyses and
long-term field studies showed that the relative intensity of
mechanisms contributing to storage and those contributing
to destocking may change over time. These studies also
showed that it is essential to understand how the soil and
climatic conditions modulate soil organic C stabilisation
mechanisms.

In addition, while considering practices in terms of the C
cycle and increased soil C stocks, the importance of interac-
tions with cycles of other nutrients present in OM (N, P, S,
etc.) should not be overlooked. Finally, regardless of the land
use, it should be kept in mind that the main challenge for all
agricultural stakeholders is to ensure a production level that
will provide enough food in the context of world population
growth and sufficient income for farmers, while maintaining
employment. Preserving or increasing OM stocks are also
levers with regard to these issues (Manlay et al. 2016).

4 How could a better accounting of OM stabilisation
mechanisms improve the prediction of soil organic C
stock evolution?

Working at the scale of mechanisms often implies working at
fine spatial scales (mm–μm), only assessing the potential role
of specific mechanisms and studying them in specific condi-
tions (laboratory experiments or experiments in specific soil
and climatic conditions). Predicting changes in the soil organ-
ic C stock through the understanding of mechanisms raises at

least two crucial related issues that will be discussed in this
section: (1) upscaling (from μm3 to dm3 and then to the plot,
landscape and global scale) and (2) validation (from the po-
tential action of a mechanism to its quantitative expression in
different soil and climatic contexts). Regarding the upscaling
issue, there are at least three possibilities: (1) finding an indi-
cator that describes one or more mechanisms, (2) introducing
more mechanisms in soil organic C dynamics models (RothC
or Century types) or (3) identifying variables measured at the
microscopic scale that allow, through appropriate modelling,
prediction of macroscopic trends. Each of these approaches
must then be validated on suitable datasets (Fig. 8).

4.1 Finding indicators to improve prediction of changes
in soil organic C stocks

Several indicators have or could be developed to improve the
prediction of soil organic C stocks, particularly in a context of
land use and practice changes (see IPCC 2006, detailing the
method currently used to estimate changes in soil C stocks).

The most currently discussed indicator is probably the C
saturation deficit. Hassink (1997) proposed that the proportion
of the fine fraction (<20 μm) of a soil implies an upper limit to
its capacity to store stable C. This theoretical limit can be
calcu la ted (C s a t ) by par t ic le-s ize measurements
(Csat = 4.09 + 0.37 × (clay + fine silt)) (Hassink 1997).
Sequestration by the fine fraction is due to the physical and
physicochemical protection provided by finely divided min-
erals (see Section 2.2.2). The C saturation deficit is obtained
by subtracting this theoretical Csat value from the actual OM
concentration in the fine fraction of the soil. This indicator has
recently been used to draw the first map of the potential of
organic C storage in the fine fraction in the 0–30 cm horizon
of French soils (Angers et al. 2011). However, this indicator of
the potential gain of soil organic C has so far never been
validated and its relevance for predicting C stock patterns
consecutive to a change in land use or farming practices re-
mains to be evaluated (O’Rourke et al. 2015).

Another approach, somewhat similar to that of Hassink
(1997), was proposed to assess French soil C storage capacity.
Rémy and Marin-Laflèche (1974) defined some benchmark
OM levels according to clay and carbonate soil contents.
Roussel et al. (2001) used this chart to estimate the OM deficit
compared to the benchmark OM contents for French soils. The
authors thus subtracted OM contents referenced in the French
Soil Analysis Database (BDAT) from the benchmark OM con-
tents listed on the chart proposed by Rémy andMarin-Laflèche
(1974). However, the link between the potential of OM gain
and the OM deficit calculated using the Rémy and Marin-
Laflèche (1974) chart remains to be validated and the area of
validity of this chart is still an open issue (Roussel et al. 2001).

Conversely, indicators of the risk of soil organic C loss
could be developed. For example, C in a soil with a high

Agron. Sustain. Dev. (2017) 37: 14 Page 15 of 27 14



particulate OM content may be more rapidly lost compared to
C in a soil that has a greater portion of C associated with the
mineral matrix (Arrouays 1994; Jolivet et al. 2003).
Particulate OM contents, which are easily measured by
standardised methods, could thus be an indicator of the poten-
tial for soil C loss. Other studies suggest that the biogeochem-
ical stability of C might be connected to its thermal stability
(Plante et al. 2011; Saenger et al. 2013, 2015; Barré et al.
2016). In this case, thermal measurements could serve as a
proxy for assessing the amount of organic C that may be lost
following a land use or cropping practice change. Using ther-
mal measurements to assess the C sequestration potential
could also be considered.

Other indicators based on biotic mechanisms of soil organ-
ic C sequestration (see Section 2.1) could probably be used,
such as the bacteria/fungi ratio or indicators based on soil
fauna, vegetation or litter layer. Soil type and mineralogy are
also potential relevant indicators (Mathieu et al. 2015; Khomo
et al. 2016). It should be kept in mind that the measurement of
these indicators should be rapid and inexpensive to enable
them to be tested in a large variety of soil and climatic con-
texts. Finally, the indicator necessarily represents the seques-
tration mechanisms in partial and degraded form, but its pre-
dictive value will only be satisfactory if it has a sound scien-
tific basis and has been subject to a specific validation process.
These conditions have currently not been met for any indica-
tor, thus broadening the prospects for research, validation and
implementation of such indicators of soil C stock changes. In

addition, selecting relevant indicators for C storage initiatives
is still a complicated task. Indeed, indicators could trace the C
storage potential of soils (like those described above) or other
variables such as the storage rate, input fluxes, average
mineralisation rate, mean residence time in soil, etc.

4.2 Better integration of OM stabilisation mechanisms
in large-scale C dynamics models

The prediction of the evolution of C stocks by Earth-system
models is very uncertain (e.g. Friedlingstein et al. 2006). A
comparison of Earth-system models showed, for a given an-
thropogenic GHG emission change scenario, that these
models can predict a soil organic C stock evolutionary pattern
for the twenty-first century ranging from −50 to +300 GtC
(Eglin et al. 2010). The difference between the extremes of
the predicted values corresponds to about 40% of the current
atmospheric C stock. A better prediction of the evolution of
the atmospheric CO2 concentration is crucial to reduce uncer-
tainties about soil C stock changes. Soil C stabilisation mech-
anisms are not yet taken into sufficient consideration in large-
scale models (Luo et al. 2016). In particular, biological regu-
lation (macrofauna, microorganisms) and soil structure
(Wieder et al. 2015) are barely taken into account in these
models despite the fact that they are major drivers of soil C
dynamics, as noted above (see Section 2).

Furthermore, most of these models fail to reproduce the
interactions between primary production and organic C

Fig. 8 From the identification of stabilisation mechanisms to their effective consideration to improve the prediction of soil organic C stock evolution
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residence time in soils. These two variables control the
amount of C stored in soils, but independently (Todd-Brown
et al. 2013). However, explicitly integrating stabilisation
mechanisms into these models is a difficult task. We must first
find a suitable mathematical formalism to describe the mech-
anism to be added, incorporate it into the model and test
whether the model performance has actually been improved.

By this approach, various studies have been aimed at intro-
ducing the priming effect in C dynamics models (Guenet et al.
2013; Perveen et al. 2014). An equation describing the soil
OMmineralisation rate as a function of the fresh OM content,
proposed by Wutzler and Reichstein (2008) and adapted by
Guenet et al. (2013), was introduced in the ORCHIDEE mod-
el. This function actually improved the performance of the
model for representing incubation data from laboratory exper-
iments. Simulations based on various scenarios highlighted
that soil storage capacities predicted by the two versions of
the model could differ by up to 12GtC (i.e. 0.8 tC ha−1) for the
twenty-first century (Guenet et al. submitted).

The explicit representation of all sequestration mechanisms
in Earth-system models is not yet possible since it would ne-
cessitate excessively long calculation times and since the equa-
tions needed to describe many mechanisms have yet to be ac-
curately formulated. They could however be quickly improved
by increasing the number of comparisons between statistical
and mechanistic models and by testing the mechanistic models
on databases that exist or are under development.

However, the lack of precise data still hampers the use and
improvement of models, especially at large spatial scales and
in the vertical profile (Mathieu et al. 2015; He et al. 2016 ;
Balesdent et al., in press). There are indeed very strong uncer-
tainties with regard to C stock estimates and the input data of
these models (soil parameters, land use, C inputs, etc.). The
progress achieved in the GlobalSoilMap project in developing
well-resolved global maps of soil characteristics (Arrouays
et al. 2014) is also essential for improving the representation
of sequestration mechanisms in Earth-system models.

4.3 Modelling OMmineralisation at the micro-scale could
help describing macroscopic C fluxes

Another approach is to precisely describe soil OM
mineralisation in micro-scale models and investigate
how these models could usefully fuel C dynamics models
operating at larger scales (plot, landscape, global). For
example, a few models have emerged during the past de-
cade, explicitly describing the functioning of soil micro-
organisms in interaction with their substrates, their envi-
ronment and soil OM (Schimel and Weintraub 2003;
Fontaine and Barot 2005; Moorhead and Sinsabaugh
2006; Allison 2012). Some of these models include the
representation of several functional groups of microorgan-
isms (e.g. copiotrophic and oligotrophic categories) with

homogeneous ecological functioning features. These new
models including microbial processes are more consistent
with the actual processes and can be more generally ap-
plied for various environmental situations. However, they
are more complex, often theoretical and not calibrated
(Guisan and Zimmermann 2000). One current challenge
is to improve their predictive accuracy by testing them on
suitable experimental observations (Schmidt et al. 2011).
This requires research conducted on various scales (pop-
ulations, communities, ecosystems) to (1) prioritize key
factors for predicting soil C dynamics and interactions
with nutrient cycles, and (2) integrate robust and simpli-
fied functions in larger scale models.

A new generation of mechanistic models has also emerged
that take the effects of the soil physical structure on the activity
of decomposers and on C mineralisation into account. These
models include an explicit 2D or 3D description of the pore
network based on computer tomography images (Monga et al.
2008, 2014; Falconer et al. 2007, 2015; Pajor et al. 2010;
Resat et al. 2012; Vogel et al. 2015). They operate over short
time scales and have been validated for simplified systems.
These models should facilitate the classification of variables
controlling C dynamics in order to define soil structure de-
scriptors other than those currently used in models at the plot
scale so as to improve them.

An effective strategy could be to use emerging properties
from micro-scale models that explicitly take fine-scale soil
heterogeneity into account to fuel ecosystem models.
Otherwise, simplified versions of fine-scale models that cap-
ture fine-scale soil heterogeneity could be designed and inte-
grated in ecosystem models. However, such upscaling from
micrometre to plot and then global scales is a difficult task
spanning a vast field of research.

4.4 Data needed to constrain various approaches
to enhance prediction of soil C stock evolution patterns

Irrespective of the approach used to connect the
stabilisation mechanisms to the evolution of soil C stocks,
the predictions must be compared to field data. Changes in
C stocks are hard to detect in the short term (<10 years),
which is a methodological challenge for the implementa-
tion of the 4 per 1000 programme. The detection of chang-
es in soil C stocks currently involves repeated analyses
over time in long-term field studies (Fornara et al. 2011)
or chronosequences (Pöplau et al. 2011). In addition, to
assess whether predictions of a particular approach could
be generalised, it would be useful to compare the predic-
tions to data collected for different plant covers in various
soil and climatic contexts. As such, networks of long-term
field experiments and soil monitoring programmes men-
tioned above (Section 3) are particularly useful. For in-
stance, at sites equipped with flux towers, C stocks, soil
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properties and site management history are monitored, in
addition to ecosystem to atmosphere gas fluxes. Many such
sites have been developed in recent years, and there are
currently about 600 worldwide for a variety of ecosystems,
thus enabling relevant data synthesis. For example, a re-
cent study evaluated changes in primary production in
grasslands according to the nitrogen fertilisation and cli-
mate (annual rainfall and temperature) conditions
(Gilmanov et al. 2010; Soussana et al. 2010), while also
assessing organic C sequestration in grassland soils ac-
cording to the nitrogen fertilisation, harvested biomass (ag-
ricultural practices) and soil and weather conditions. Other
syntheses of data from flux tower sites showed that the C
balances were instead controlled by management practices
in young forests and by climate variations in mature forests
(Kowalski et al. 2004). Soil organic C storage was found to
increase with the number of days of plant growth (Granier
et al. 2000).

Another interesting example is the use of Free-Air CO2

Enrichment experimental systems, which artificially increase
the atmospheric CO2 concentration. Such experiments have
been developed for several years now and have generated
essential information on the response of ecosystems to in-
creased atmospheric CO2 concentrations (Ainsworth and
Long 2005). Regarding the soil, they have shown that C stock
increases when nitrogen is available and does not vary when
nitrogen is limiting, despite increased input via litter produc-
tion (Hungate et al. 2009). These data were compared with
large-scale model outputs for different output variables
(Walker et al. 2015).

Networks of sites thus enable us to estimate the importance
of stabilisation mechanisms for C storage, to classify them (by
exploring databases) and to validate approaches designed to
improve prediction of soil C stock evolutionary patterns.
However, changes in soil C stocks are often not observable
for several years after a change—this key factor highlights the
fact that such sites must absolutely be maintained in the long
term.

In conclusion, enhanced integration of soil OM
stabilisation mechanisms in models to improve predictions
of the evolution of soil C stocks is not easy. Several ap-
proaches could be proposed, each with their positive and neg-
ative features. Building soil C storage indicators based on
mechanisms is the simplest approach, but they may have very
limited predictive value if they have a weak scientific basis
due to the excessive uncertainty level. Finding a suitable and
robust formalism to incorporate the mechanisms in large-scale
models is often a major research challenge in itself. Linking
stabilisation mechanisms and modelling of soil C stock dy-
namics requires collaboration of scientific communities
conducting research on mechanisms and modelling—this is
the only way to accurately assess medium- and long-term
variations in soil organic C stocks in a changing environment.

5 Conclusion

The currently favoured solution of the 4 per 1000 initiative to
increase soil C stocks is to increase soil C input fluxes through
management practices adapted to local conditions. These
practices not only influence soil C inputs but also soil C
stabilisation and destabilisation mechanisms and therefore soil
C outputs.

Recent studies have improved the overall understanding of
biotic and abiotic mechanisms involved in soil organic C
stabilisation/destabilisation. Belowground plant contributions
have a major role in soil C storage/destocking. Contrary to
aboveground litter that might be quickly mineralised, root
inputs could greatly contribute to C inputs that may be
stabilised in soils, although they may also induce over-
mineralisation of native OM, especially when nutrient re-
sources are limited. Plant residues supply intermediate and
labile soil C pools, and, through their chemical composition,
control their dynamics. They also indirectly act on the stable C
pool by promoting aggregate formation through roots and
mycorrhizal associations.Microorganisms and soil fauna have
a central role in soil C storage/destocking mechanisms be-
cause they consume and transform OM. Their metabolic ac-
tivity produces CO2 and CH4 (destocking) when they con-
sume applied (exogenous) and native (endogenous) OM.
However, the action of soil organisms is generally considered
to produce secondary compounds that ultimately contribute to
soil C stabilisation, either via their chemical recalcitrance or
via the interactions they establish with mineral soil ions and
surfaces. Soil organisms are also essential for nutrient
recycling, and preserving ecosystem balance and biodiversity.
All of these co-benefits tend to indicate that soils with high
biological activity have a higher C storage potential. However,
their management requires increased knowledge on the
interacting mechanisms and is more operationally difficult.
The 4 per 1000 initiative will have to consider these antagonist
biotic mechanisms in its recommendations in order to balance
higher soil C stabilization with respect to C mineralisation.

The action of decomposers on OM depends on the arrange-
ment between particles (inorganic and organic) and on the
network of pores in which the fluids, decomposers and their
enzymes circulate. Recent studies have also highlighted the
central role of mineral phases in protecting OM. However, it
appears that all mineral surfaces do not have the same ability
to protect organic compounds and that organomineral com-
plexes evolve over time due to weathering processes. Recently
developed tools should lead to significant progress in the un-
derstanding and modelling of the influence of the soil matrix
structure on soil C storage/destocking.

The effects of OM stabilisation mechanisms must be
studied throughout the soil profile, including deep soil
horizons (up to parent material), since plant root systems
have a very high impact. C dynamics models should

14 Page 18 of 27 Agron. Sustain. Dev. (2017) 37: 14



therefore not be limited to the soil surface since deep soils
are also impacted by agricultural practices and land-use
patterns. These models should try to find indicators that
explicitly take the different soil compartments into ac-
count and no longer consider the microbial component
as a ‘black box’, while also considering the soil fauna.
Research on the validation of indicators of these mecha-
nisms is essential in order to take the complexity of the
equation involving biological factors, physical interac-
tions, soil and climate conditions, land-use patterns, prac-
tices and management into account.

This review highlighted three essential needs for future re-
search on soil C storage: long-term monitoring of experimental
sites; reliable and precisely resolved data (soil parameters, land-
use patterns and practices), particularly at large spatial scales;
and multidisciplinary interactions between researchers in the
fields of soil science and ecology. Indeed, although the different
mechanisms are often studied separately, they should be studied
together as they are related. These complex interactions drive C
dynamics. Finally, it is crucial to strengthen interactions be-
tween operational and academic communities in order to accu-
rately identify the challenges that still need to be addressed to
enhance the overall understanding of the impact of agricultural
practices on soil C storage, to disseminate new knowledge and
translate it into practical recommendations.
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