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Summary. Diggle's tests of spatial randomness based an empirical distributions of interpoint distances
can he performed with and without edge-effect correction. We present here numerical results illustrating
that tests without the edge-effect correction proposed by Diggle (1979, Biometrics 34, 87-101}) have a
higher power for small sample sizes than those with correction. Ignoring the correction enables detection of
departure from spatial randomness with smaller samples (down to 10 points vs. 30 paints for the tests with
correction). These results are canfirmed by an example with ecological data consisting of maps of two species
of trees in a West African savanna. Tree numbers per species per map were often less than 20. For one of the
species, for which maps strongly suggest an aggregated pattern, tests without edge-effect carrection enabled

rejection of the null hypothesis on three plots out of Ave vs. on only one for the tests with cotrection.
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1. Introduction

Tests of spatial randomness and spatial association based on
interpoint distances have been developed to analyse spatial
pattern data consisting in maps of points (Ripley, 1881; Dig-
gle, 1983). This kind of data is frequent in ecology {e.g.,
Fisher, 1993, Haase, 1995; Haase et al., 1996, Moeur, 1993;
Skarpe, 1991; Steiner, Ribie, and Schatz, 1986; Szwagrzyk,
1990), where maps of e.g. plant locations are drawn to study
interactions between individuals. The most popular tests
among ecologists are based on Diggle's F and @ functions and
on Ripley’s A function. These tests enable to assess whether
observed spatial patterns can be considered as regular, ran-
dom or aggregated, the null hypothesis Hg being that of com-
plete spatial randomness (synonymous for a homogeneous
Poisson process in this paper, as in Cressie, 1991, p. 586).

Diggle’s tests perform well for relatively small samples
(down to 30 mapped points}. However, one often wishes to
identify the type of spatial pattern with smaller samples such
as in the following:

(1} In ahierarchical pattern with clumps of points, it might
be valuable to analyse the pattern of points within
clumps, which may be of small size, depending on the
particular pattern.

(2} When a map is drawn in the feld, there will almost
certainly be classes of points of ecological inferest with
few individuals, e.g., adult trees are often much less
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numerous than younger ones although their ecologi-
cal role is prominent (Barot, Gignoux, and Menaut,
1998b; Steiner et al., 1986), some species may be rare
and still justify a study (Forman and Hahn, 1980), size
classes defined for objective reasons (commercial size
in a forest) might be rare, etc.

{3) Field plots are not always designed with spatial anal-
ysls as a unique goal—they are often designed for a
factorial experiment or a demographic survey—and as
such may not be of a sufficiently comfartable size for
the spatial analysis of each plot. Given the high cost
of field surveys, this kind of information will often be
the only that is available to study the spatial pattern.

Thus, there is a need to improve the sensitivity of the
mast standard existing tests for small samples of 10 to 30
points, a sample size where spatial patterns are still recog-
nizable but not by most of the existing statistical methods,
except Ripley’s K function {e.g., Ripley, 1981, pp. 182-183}.
Although the K-based test seems more efficient than the F
and G tests, it should not be used alone because the three
tests have slightly different meanings and different sensitivi-
ties to different types of spatial distributions: the typical hi-
erarchy of powers for samples of 100 points against aggre-
gation is power(F'} > power(K) > power(G) and power(K)
> power((G) > power(F) against regularity (Diggle, 1379).
These pawers have been estimated for a single sample size and
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far a limited set of alternative hypotheses but constitute, at
the mornent, the only available information on the sensitivity
of these tests since no systematic study of the power depend-
ing on the sample size has been performed so far. Working
on a large data set of real data (full maps of all trees in five
plots of a West, African savanna), we found that the &G and F'
tests almost never reject the null hypothesis below approxi-
mately 30 points, while tests ignoring the correction for edge
effects initially proposed by Diggle (1979} were ahle to reject
the null hypothesis down to sample sizes of 8-10. The goal of
the present study is to explain this better sensitivity of un-
corrected tests through a simulation study of their power and
to document, it with an example on real data.

2. Diggle’s Tests of Spatial Randomness

The tests rely on the comparison of an observed distribution
of nearest-neighbor distances to the theoretical distribution
expected under the null hypothesis of complete spatial ran-
domness. They invalve two cumulative distribution functions
(c.d.f.s) of nearest-neighbor distances based on {using Diggle's
naotations)

(i} the distance w between each point of the observed spa-
tial pattern and its nearest neighhor (Diggle’s & fune-
tion);

(ii) the distance z between each point of a predefined sam-
pling grid and the nearest point of the observed spatial
pattern (Diggle's F function).

The choice of the sampling grid (point pattern and number
of points} has been discussed widely in Ripley (1981) and
Diggle (1983}. We used a pragmatic approach, as proposed by
Upton and Fingleton (1985}): We based our tests on a regular
grid of sup(N, 400) points, where N is sample size.

The theoretical c.d.f.s under Hg are {Diggle, 1983)

Go(w) =1 — ™ (1)
Fy(z) =1 -, @

where A is the intensity of the homogeneous Poisson process
and the index refers to Hg.

These expressions are compared to empirical c.d.fs calcu-
lated from a sample of limited spatial extent. Paints located
near the border of the mapped plot might have their nearest
nelghbor outside the plot. This edge effect causes a system-
atic error in the estimation of the empirical c.d.f.s. A classical
edge-effect correction (EEC), derived from minus sampling
{Miles, 1974), proposed by Diggle (1979) and called the bor-
der methad by Ripley (1988), relies on the elimination of two
groups of points, specifically,

(1} all points that lie closer to the border than to their
nearest neighbor ingide the plot are discarded,

(2} when estimating the empirical ¢.d.f.s at distance d, all
paints lying within the strip of width d from the border
of the plot are discarded (Figure 1); increasing d leads
to discarding a larger number of points.

In this method, the mean proportion of discarded points in-
creases when sample size decreases. This effect is also ampli-
fied by increasing dimension [see the three-dimensional ver-
sion of the method by Baddeley et al. {1993} and Baddeley
and Gill (1997)]. Three-dimensional data sets, although rare,
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Figure 1. The carrection for edge effects in Diggle's F' and
(7 tests. Points o are discarded because they are closer to the
barder than to their nearest neighbor. As distance d increases,
points e are discarded when they lie within the strip of width
d. At the distance shown, only 7 points out of 12 are used to
compute G(d).

exist in ecology but are costly to obfain and require very
efficient tests.
With this carrection, the empirical ¢.d.f.s are (Diggle, 1983)

Glw) = # {ws < w, by > wh /# {b; > w} (3)
Flz) = # {2: <2,by > 2} J# {b >z}, (4)

where w, {respectively, z;] is the distance of paint i to its
nearest neighbor and &, the distance of point i to the nearest
border of the sample plot.

These estimators do not have the same properties (Ripley,
1988). F(z) is unbiased (since its denominator is a fixed nurm-
ber, E[#{z; < z,b; > z}|/#{b; > z} = E[F(z)] = F(z)),
while G(w) is only ratio-unbiased (sinee its denominator is a
random number, B{#{w; < w, b > w}/E[#{b, w}] = Glu);
Ripley, 1988, p. 27; Baddeley and Gill, 1997). Both are non-
monoctone (see Figure 6 for an example), particularly at large
distances.

The most widely used test statistics are hased on the dif-
ference between the empirical and theoretical c.d.f.s, with ex-
pected value under Hy zero at all distances (Diggle, 1983),
ie.,

dw = sup |G(w) — Golw) (5)

dz = sup | F(z) - Fy(a)], (6}

where the sup are taken on all distances smaller than the half-
length. of the smallest side for a rectangular plot, given the
edge-effect correction used. We note wsup = argfsup,, [@'(w) -
Go(w)|) and zsup = arg{sup, |F(w) — Fo(w)|), the distances
correspanding to dw and dz.

One can obtain test significance for dw or dz analytically
for simple cases only {homogeneous Poisson processes in a
plot of infinite surface) but, as observed samples are usually of
finite area, edge effects lead to untractable distribution theory
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(Diggle, 1983). A solution is to use Monte Carlo simulations
to estimate a confidence interval for G{w) under Hy at each
distance (the same procedure holds for F) using the following
procedure:

{i) First, compute the empirical c.d.f. é(w) from the ob-
served data and the test statistic according to (5).
(ii] Generate s random spatial patterns (i.e., patterns un-
der Hy) of the same intensity as the observed pattern.
(iii) Compute C?Oj(w) and daw; for each simulated pattern
{(1=1,...,8) according to formulas (3) to (6} to get an
estimate of the distribution of the test statistic under
Hg.
Estimate a rejection limit or a P-value (e.g., if a test
at the 5% level is performed with 100 simulations, the
rejection limit will be given by the ffth greatest value
of simulated dw’s; the P-value will be estimated as the
propartion of simulated samples for which that dw is
greater than the observed dw). The greater the num-
ber of simulations, the hetter the estimated P-value ar
rejection limit {Marriott, 1979).

(iv)

When Hg is rejected, the sign of the difference between
the empirical and theoretical ¢.d.f. with the greatest absolute
value enables deciding whether there is a tendency toward
aggregation or regularity: if & (wsup) — G (wsup) > 0, the pat-
tern is aggregated, otherwise it is regular; the reverse holds
for the F' test. One-sided tests could also be constructed, but
they would probably be of little use in ecology since many
ecological processes can act simultaneously in a system (e.g.,
the spatial pattern of a population of plants results from the
initial pattern of seeds, usually very clumpy, and from compe-
tition, leading to regular distribution; hence, regularity as well
as aggregation can be simultaneously expected, depending on
which ecological factor is prominent).

3. How to Build Tests Without
Edge-Effect Correction

Ta build a consistent test, we need to treat edge effects in the
same way for the theoretical and the observed c.df.s. Two
methods are paossible:

(1) the classical methad deseribed in Section 2: if we use an
EEC for the observed ¢.d.f., we can use the theoretical
c.d.f. in its analytical form given by expressions (1) and
(2);

(2) another method: get an estimate or an analytical ex-
pression of the theoretical and observed c.d.f.s for the
same sampling window, hoth computed without EEC.

Methad {2) has the advantage over methad (1) of making
profit of all the information of the dafa set, which is partie-
ularly interesting for small samples. The only problem with
method (2} is that the analytical expression of the theoreti-
cal e.d.f. affected by a sampling window is usually unknown.
Diggle (1983} proposed using the mean of the Monte Carlo
simulated distributions as an estimate of the thearetical c.d.f.
when the analytical expression of the theoretical c¢.d.f. is un-
known. We can use this method to estimate the theoretical
c.d.f. for a given sampling window for a homogeneous Poisson
pracess.
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Without EEC, the estimations of the observed and theo-
retical c.d.f.s, and the test statistics, respectively, become

& (w) = #{w;, < w}/N (7)

Gi(w) = = 3 #{wyg <w}/V ®)
i=1

dw’ = sup |&* (w) — Gj(w)], (9)

where N is the sample size (number of ohserved points), s
is the number of Monte Carlo simulations used to compute
rejection limits or P-values, and w;; is the distance of the ith
point of simulation j to its nearest neighbor, and with similar
expressions for the F' function. The bias due to edge effects of
the ¢.d.f.5 computed from expressions {7) and (8} are nated
Bo{w) for G{w) and Be(w) for G*(w). Under Hy, these two
biases are equal and do not affect dw® and the type I error
of the test 15 unaffected by the bias. Under Hy, the biases are
different, dwn* is affected by the bias and, as a result, the power
of the tests hased on dw” could be affected. An unbiased test
statistic would be given by

dut = S:Lp J [G‘,*(w) _ B.(,w)l — [Ga(wJ — Bo('w)][ y (10)

where Ba(w) and Bg(w) are the estimates of Ba{w) and
Ba(w). The test based on dw*™ can only be performed with
simulation data sinece H; has to be known to estimate the bias.
We used it to evaluate the effect of the bias on the power of
the tests based on dw”™ through a simulation study.

4. Simulaiion of ‘Observed’ Spatial Patterns

To study the perfarmances of the tests with and without EEC,
we generated ‘ohserved’ spatial patterns through simulation.
We chase two contrasted alternative hypotheses, a highly ag-
gregated spatial pattern Hy, and a highly regular pattern Hy,
(Figure 2}, generated, respectively, from a Poisson cluster pro-
cess and a sequential inhibition process (Diggle, 1979; Ripley,
1977). Those hypotheses are as follows:

(1} The Poisson cluster process is based on (i) a homoge-
neous Poisson process with intensity p of parent points,
{ii) a ptobahility distribution to describe the number
of offspring points per parent, and (iii) a bivariate
distribution describing the position of offspring rela-
tive to parents. In the present case, we used a Pois-
son distribution for {ii) and a symmetric radial normal
distribution for (iii}, as in Diggle (1979). Parameters
were the intensity of the whole process A = 10, the
mean number of offspring per parent g = 1.5 (thus
£ = A1+ p) = 6.667), and the average distance of
offspring to parents ¢ = 0.08. Parent points were kept
in the final pattern.

{2) The sequential inhibition process assumes that (i) all
points are distributed uniformly over the whole plot,
with the constraint that (ii) the ith point must be dis-
tant at least 4 from all the previously located points.
We chose as parameters an intensity A = 10 and a
minirmum separation distance between points § = 0.2.

Far Hy, a hamogeneous Paisson process with intensity A =
10 was used.
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Figure 2. Examples of realizations conditioned by sample
size of the three types of processes used in all simulations: a
tegular pattern {H;,) simulated from a sequential inhibition
process with intensity A = 10 and & = 0.2; a randorn pattern
(Hq) simulated from a homogeneous Poisson process with in-
tensity A = 10; an aggregated pattern {H;p) simulated from
a Paisson cluster process with A = 10, . = 1.5, and ¢ = 0.08.
Top, samples of size 40; battom, samples of size 10.

We generated processes for seven samples sizes on a square
plot: 10, 15, 20, 25, 30, 40, and 50 points. Conditioning by
sample size is straightforward for the homogeneous Poisson
and sequential inhibition processes; for the Poisson cluster
process, conditioning was based on a rejection methad. Pro-
cess parameters were chosen to produce rather distinet pat-
terns since our main focus was on the effect of sample size
rather than on the alternative hypotheses. Differences are con-
spicuous on large samples and sometimes still visible on small
samples {Figure 2).

G —test with EEC

Q12
@ 008
=
2
a
> 0.04
0.00 RS
Q.0 21 Q.2 0.3 0.4 15
Distance
F ~test with EEC
0.03
§ 0.02
&
&
=0
0.00) ‘et
0.0 a1 0.2 0.3 0.4 0.5
Distance
Figure 3.

of Tests of Spatial Randomness

159

8. Study of the Bias and Variance of the
Test, Statistics

The power of the tests depends on both the bias and the
variance of the test statistics. We estimated the variance of
the test statistics dx, dw, dz”, and dw”™ from 1000 Mante
Carlo simulations of a homogeneous Paisson pracess. The es-
timates of the thearetical distributions for the tests without
EEC were computed from the sare 1000 simulations. Com-
putations were done at each sarnple size. The statistics of the
tests without EEC have a much lower variance than those of
the tests with EEC {Figure 3}. A direct consequence of this
is that the rejection limits for a sarmple of size 10 are very
cloge to the maximal possible value of the test statistics of 1
in the tests with EEC: e.g., the rejection threshold at 5% for
the dw-based test is 0.94 but drops to 0.47 in the dw*-based
test.

To estimate B (w) (bias of G*(w) under H;), we need to
estimate E[G"(w)], which is easy (expression (7)), and esti-
mate G(w), which is unknown for Hy, and H;py,. Since edge
effects are due to the passibility that the nearest neighbor of
a point of the sample lies outside the mapped area, we sim-
ulated a large sample, of which only the central points were
used to build the estimate. The sample was large enough to
guarantee that the nearest neighbor of each paint of the cen-
tral area laid within the larger sample. The resulting unbiased
estimated G{w) was computed as

G**(w)zéz#{w:jsw}/fv‘ (].].)
i=1

where wéj is the distance of the ith point of simulation j to
its nearest neighbor, with neighbaors being searched eventually
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Variatce of the test statistics dz, dw, dz*, dw* for sample sizes 10, 15, 20,

25, 30, 40, 30 {thickest line: N = 10; thinnest line: ¥ = 50}). Estimates based on 1000
simulations. Distances normalized to a square plot of unit side.
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Figure 4. Example of the bias due to edge effects for G*,

with N = 20, for the three simulated processes studied (Fig-
ure 2). Estimates (expression (12)} are based on 1000 simu-
lated samples with a guard area of width twice the length of
the sampled plot.

outside the central plot. Be(w) was then estimated as
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for extremely aggregated or regular pracesses as those used
here, encourage consideration of dw® as a suifable test statis-
tic. Computations with larger sample sizes {up to N = 50}
showed that the bias decreases with increasing sample size
(Table 1).

6. Power of the Tests

We expect the tests based on the modified statistics dw” and
dxr* to he more sensitive than the classical tests based on dw
and dz, as the modified statistics do not discard any data
point for the computation of the ¢.d.f.s, and apparently bear
a reasonably small bias. We therefore compared the power of
the tests with EEC to that of the tests without EEC.

Table 1
Muazimum absolute values of the bias on the empirical ¢ d.f.s
due to edge-effects for Hg (random) and twe olternative
hypotheses (regulor and aggregated patterns of Figure 2)

Ba(w) = G"(w) — G (w). (12) Maximum bias for pattern

The same procedure holds for the F function. cdf N Aggregated Random Regular

For each sample size, 1000 simulations were run to estimate
Bia(w), Biy(w), and Bo(w). The simulations were done by F 10 0.094 0.077 0.081
conditioning the sample size of both the central sample and 15 0.078 0.062 0.063
the total sample {e.g., to simulate an intensity of 10, the cen- gg gggg ggig ggig
tral sample of area 1 had 10 points and the total sample of 30 0:060 01042 0:042
area 9 had 90 points). This double conditioning was hased 40 a.051 0.035 0.034
on a rejection method {realizations were rejected when they 50 0.041 0.031 0.027
did not satisfy the two conditions). The example presented
in Figure 4 shows a clear difference in bias hetween different G 10 0.037 0.090 0.137
processes. The bias maximum ahsolute value decreases from ég 83%2 ggég géé;
regular to aggregated patterns, random patterns being inter- 95 0:023 0:053 0‘.088
@ediate {Tahle 1}. The absolute difference between Bi(w)} and 20 0.020 0.047 0.080
Bo(w} (i.e., which affects the test statistic) is about 0.06 at its 40 0.018 0.042 0.068
maximum for the example given, with extremely aggregated 50 0.017 0.038 0.060
and regular distributions. These relatively small values, even

Table 2

Estimated power of the tests based on dw, dx, dw”, dz”, dw*™, and dz** for two contrested
alternative hypatheses (see text and Figure 2); o, significance level; N, sample size

Aggregated pattern (Hy,)

Regular pattern (Hiy)

Aggregated pattern (Hia} Regular pattern (Hyiy}

Power for test based on

Power for test based on

Power for test based on Power for test based on

o N d dx* dz** dz dx* de** dw dw™ duw** dw dw* dw**
005 10 0316 0.872 0.914 0.028 0,440 0.472 0.012 0.800 0.914 0.052 1.000 1.000
15 0.483 (.978 (.988 0.054 (.686 0.730 00586 0994 0.958 0.090 1.000 1.000

20 0.712  1.000 1.000 0.158 0.886 0.906 0.846 (.998 0.998 1.000 1.000 1.000

25 0.856 1.000 1.000 0.304 0.956 (.966 0.9580 1.000 1.000 1.000 1.000 1.000

30 0898 0.998 1.000 0.440 0.994 0.990 0.996 1.000 1.000 1.000 1.000 1.000

40 0966  1.000 1.000 0.694 (.998 0.996 1.000  1.000 1.000 1.000  1.000 1.000

50 0994 1.000 1.000 0.788 0.998 1.000 1.000 1.000 1.000 1.600  1.000 1.000

0.01 10 0176 0.566 (0.626 0.000  0.024 0.040 0.002 0.790 0.802 0.000 1.000 1.000
15 0.214 0,902 0,942 0000 0.246 0.312 0.016 0.934 0.938 0.004 1.000 1.000

20 0.334 0960 0.970 0.000 0.548 0.542 0.030 0.974 (0.980 0.006 1.000 1.0400

25 0.548 0996 0.996 0.014 Q.R38 0.862 0.528 1.000 1.998 1.000  1.000 1.000

30 0.656 0.998 0.998 0.052 0.892 0.914 0.973  1.000 1.000 1.000  1.000 1.040

40 0.888  1.000 1.000 0.270 0.954 0.946 3.998  1.000 1.000 1.000  1.000 1.0400

50 0.960 1.000 1.000 0.452  0.984 0.984 1.000  1.000 1.000 1.000  1.000 1.000
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Table 3

Summary of the analysis of the spatial patterns of Figure 4 with the F and G tests with and

without edge-effect corrections and with Ripley’s K test. Significant results at the b% level in

hold. Signed test stotistics used. P-values estimated with 500 Monte Carlo simulations of Hq.

F test G test K test
Species Plot. N dx P dx* P du P dus® P Lom P

Bridelia A 7 0.339 0.092 0.027 0.972 0.277 0.980 —0.222 0.942 —3.634 0.976
ferruginea C 12 —0.124 0.508 —0.054 0.650 —0.925 0.078 0.225 0.710 2.633 0.884
G 22 —0.031 0.964 0.032 0.802 —0.155 0.886 0.175 0.564 —1.827 0.670
H 3 0024 0.982 0.024 0.876 —0.214 0.238 —0.244 0.052 -1.003 0.718
I 18 0094 0522 —0.065 0.366 —0.350 0.314 —0.176 0.666 2.548 0.454
Cussonia A 11 0.133 0.470 —0.103 0.184 0.494 0.312 0.396 0.128 5.258 0.180
arbarea C 7 —0.294 0.148 0.041 0.848 —0.585 0.508 —0.430 0.278 —7.664 0.230
G 14 —0.152 0.316 -0.253 (.000 0.583 0.124 0.514 0.006 6.441 0.004
H 60 —0.114 0.020 -0.143 0.000 (320 0.000 0.311 04000 2.494 0.000
[ 10 —0.165 0.360 —0.087 0.330 —0.733 0228 0.657 0.002 6.722 0.080

Power was estimated for Hi, and Hi,. Five hundred real-
izations of both processes for each of the seven sample sizes
constituted our observed samples. The six tests (based on dw,
dr, dw®, dz*, dw*™, dz**} were completed for each of these.
Rejection thresholds were computed with 1000 other Monte
Carlo simulations of a homogeneous Poisson process with the
same sarnple size as the (simulated) observed process for each
sample size. Tests were performed at the 0.01 and 0.05 signif-
icance level.

For hoth alternative hypatheses and for small samples, duw-
based tests have a much lower power than dw®-based tests,
which in turn have a slightly lower power than the dw™*-
based tests (Table 2). Rejection of Hyg can accur for samples
as small as 10 poinis for tests without EEC, while the power
of the tests with EEC drops below 25-30 points. The same
canclusion holds for the de-, dz*-, and dz**-based tests. For
large samples (N = 50), the tests with and without EEC tend
to have the same powers.

We found 2 maximum absolute difference of 0.014 between
the powers of dw”- and dw**-based tests and of 0.066 between
the powers of dz”*- and dz""-based tests (Table 2). These dif-
ferences are rather small cornpared to the gain in power ob-
tained from using tests without EEC instead of tests with
EEC and justify the use of dw* and dx* as suitable statistics.

The G- and F-based tests have different power curves:
against regularity, we find, like Diggle (1979), that the dw™-
based test has a higher power than the dx”-based test. Against
aggregation, both tests have rather similar powers, contrary
ta what Diggle found. Maybe a systematic study of pawer
far more alternative hypotheses would help in assessing this
point.

7. Example with Real Data

As a real case study, we analysed the spatial pattern of two
species of trees an five 50 hy 530 m plots of a West African
savanna (Lamto, Céte d’Ivaire; see Menaut and César (1979)
for a complete description of the site and study species). All
trees 2 m, considered adults, were mapped (Figure 5}. The
two species selected here (Brideiia ferruginea and Cussonia
arborea) belong to the group of the four dominant species

in this savanna type. Although the plots all share the same
soil type and main grass species, they have very different tree
densities—a characteristic of these savannas. The spatial pat-
tern of trees is of great imporiance in savanna ecosystems
since it conditions most of the physical and biclogical pro-
cesses driving the ecosystem, such as competition far light
and water between trees and grass and young tree mortality
induced by the annual fires that burn the grass layer (Menaut
et al, 1990].
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Figure 5. Positions of all adult (22 m in height} trees of
two different species on five 50x 530 m plots in a humid savanna
of West Africa (Lamto, Céte d'Ivaire).
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Figure 6. Results of the analysis of the spatial patterns of Figure 4. Abscissa: distanee w (respec-
tively, z) on a scale from 0 to 25 m. Ordinates on a scale from ¢ to 1: thick line, empirical c.d.f. of
the observed sample; thin lines, theoretical c.d.f. against which it is compared and envelope of 500
simulations. The theoretical c.d.f. is equal to Gg(w) (respectively, Fy(z)) for the tests with edge-
effects correction and to Gglw) (respectively, Fy(z)) for the tests without EEC. Summary statistics

are provided in Table 3.

We analysed the spatial pattern of trees on the five plots
with the F' and & tests, with and without EEC. We also per-
formed the test based on Ripley's K function as a reference.
We used the L, test statistic as defined by Ripley (1981). The
K test is able to reject Hg for samples as small as 14 points

{e.g., in Ripley, 1981, pp. 182-183) and had the highest power
against regularity according to Diggle's (1979) estimates. Re-
sults are summarized in Table 3 and Figure 6.

The ¥ test leads to rejection of By for Cussonia on plots
G and H and indicates aggregation. In all ather cases, Hq is
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not rejected. The P-value for Cussonia on plot I is low (0.08),
suggesting that a more powerful test could detect aggregation
on this plot.

With the dw and dz test statistics, the null hypothesis is
rejected anly once and indicates aggregation for Cussonia on
the H plot, the plot with the highest tree density.

However, this species seemed to form small clumps of trees
on at least three other plots (A, G, and I: see Figure 5], and
the K test indicates aggregation on plots G and H and is
almost significant (P = 0.08) for plot 1. Rejection of Hy is ef-
fectively obtained with the dw*- and dz*-hased tests on plots
G and H and with the dw*-based test on plot I. The sign of
the test, statistics all indicate a tendency toward aggregation.
There is probahly such a tendency on plot A also, indicated
by a relatively low P-value for the dw"-based test {0.128),
the general shape of the & function (Figure 6), and the map
(Figure 5). The species is then probably characterized by an
aggregated pattern, not always detectable with samples be-
low size 12 but detectable above this limit. Such a pattern
can be due to a variety of ecological causes, the three main
ones being the seed dispersal pattern, a high sensitivity to
fire (Menaut et al., 1990}, and association with nutrient-rich
patches (Barot, Gignoux and Menaug, 1998a).

Cantrary to Cussonia, the use of tests without EEC does
not change the results for Bridelia. These results are con-
sistent with those of the K test. We therefore conclude that
Bridelio has a random spatial pattern an all plots. The ecolog-
ical interpretation of this result is that this species should be
highly fire-resistant since it has heen demanstrated that fire-
sensitive species should have an aggregated pattern in this
savanna {Menaut et al., 1990). There is 2 slight tendency to-
wards regularity (Figure 5, plots H and I}, which is almost
significant on plot H (dw*-based test; P = 0.052). Such a
tendency is usually interpreted as an indication of competi-
tion for resources (light, water, or nutrients).

Figure 6 emphasizes the nonmonotonicity of the £ and &
estimators, specially at large distances {e.g., empirical distri-
butions of Bridelia on plot C and Cussania on plots C and
I).

8. Conclusion

The correction for edge effect in Diggle's tests based on the &
and F functions with. EEC is too prudent and should either
be ignored {dw*- and dz*-based tests), as in the procedure
suggested by Diggle {1983} and studied in detail here, or re-
placed by more sophisticated corrections leading to a lower
loss in data, like those proposed by Ripley for his K function
(Ripley, 1981}, or others (Haase, 1995; Ripley, 1988; Badde-
ley and Gill, 1997). Ignoring edge-effect correction leads to a
gain in power for small samples sizes, which enables analysis
of very small samples of spatial patterns with a sensitivity
comparable to or greater than that of the test bhased on Rip-
ley’s K function. Based on this resulf, it seems that, when
analysing real data, the three tests (based an dw*, dz*, and
L) should be used simultaneously since they are sensitive to
slightly different types of processes.
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RESUME

Les méthodes d'analyse des répartitions spatiales basées sur
les fonctions F et & proposées par Diggle peuvent inclure ou
non une carrection pour les effets de bords. Nous illustrons par
des simulations et sur des données écologiques que les tests
ignorant cette correction ont une puissance plus élevée pour
les petites tailles d’échantillon que les tests avec correction.
Les tests sans correction peuvent. détecter 1’écart & la distri-
bution Poissonienne pour des échantillons de taille plus petite
(jusqu'a 10 points), alors que les tests classiques sont limités
& 30. Ces résultats sont illustrés par un exemple utilisant des
données provenant de cartes de répartition des arbres dans
des savanes d'Afrique de I'Ouest. Les données ont €té recueil-
lies sur de petites parcelles (0,25 ha} ol les densités d'arbres
par espéce étaient en général <20. Pour I'une des espéces &
répartition nettement agrégative, les tests sans correction ant
permis de rejeter 'hypothése nulle sur 3 parcelles sur 5, aloxs
que les tests avec correction ne l'ant rejeté que sur une par-
celle.
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